

Innovative methodology based on a nontargeted screening approach combined with activity patterns for estimation of soil and dust ingestion rate in children.

Lead PI: Natalia Soares Quinete Co-PIs: Daniel Bagner, Florence George and Piero Gardinali

Disclaimer

 This project is funded by the following award from the Environmental Protection Agency (EPA) to Florida International University
 EPA-G2020-STAR-D, Estimating Children's Soil and Dust Ingestion Rates for Exposure Science

The opinions, findings, and conclusions hereby presented are those of the authors and do not necessarily reflect those of the Environmental Protection Agency (EPA)

Outline

Website: https://case.fiu.edu/research/nta-solution/

Introduction

- Vulnerability and susceptibility of young children from 6 months through 6 years who are daily exposed to a variety of chemicals through outdoor activities, but also indoors in their homes and schools
- A better understanding of the contaminants ingested from soil and dust ingested is needed
- Issues on current soil and dust ingestion assessments Designation of interviews or surveys Misinterpretation, language, lack of attention. Incorrect assumptions on modeling

Addressing some gaps...

- Flexible remote appointments for surveys and interviews, without children interference, could increase the reliability of the information obtained.
- We are increasing representativeness for southeastern U.S territories with different climate and soil types
- Our study area is Miami, South Florida, with the majority of the population being Hispanic (Latino) and Black increasing underrepresented races and ethnicities in the soil and dust ingestion rate estimates.
- Combination of NTA to identify unique chemicals in soil and dust and information on children activities patterns (mouthing behavior, frequency of hand washing, time spent in specific microenvironments, among others) will improve soil and dust ingestion rates, reducing bias and providing long-term exposure data.

Why non-target analysis?

- Non-target analysis assumes no prior knowledge of the compounds, providing a far more comprehensive picture of the chemical composition
- Our goal is to establish an NTA method to assess the organic contaminants for different matrices

 Seek potential tracers that can be potentially used to study the soil and dust ingestion rate

Database search

Aim 1: Development of a non-targeted analysis (NTA) method to estimate soil and dust ingestion by children

Aim 2: Activity pattern study to estimate soil and dust ingestion by children.

Aim 3: Statistical calculations combining both approaches for accurate estimation of soil and dust ingestion rate by children.

IRB Protocol Approval #: IRB-21-0385 (Approval Date: 08/23/21 until 08/23/24)

Aim 1: Development of a non-targeted analysis (NTA) method to estimate soil and dust ingestion by children

The QAPP document was submitted and has been approved

 Non-targeted screening methods for different matrices (urine, soil, dust, food and water provided by parents/caregivers) have been established and optimized

Identify specific chemicals that could be used as tracers for soil and dust ingestion

Aim 2: Activity pattern study to estimate soil and dust ingestion by children.

- ✓ Goal to recruit 81-90 children aged 6 months to 6 years from families in the greater Miami area ->Pediatric Care Center (PCC) at Nicklaus (Miami) Children's Hospital (NCH), including a database of children of 12- to 18month-old from Dr. Bagner.
- ✓ Most of the population from underrepresented races and ethnicities
- Children's behavior, activities, and demographic information will be assessed by remote surveys and/or interviews-> Surveys and questionnaires were created and setup in REDCap

Be WorldsAhead

Recruitment Rate Progress

✓ We are close to our targeted enrollment (i.e., at least 81 families), and a total of 24 families have completed the first two sets of sample collection and surveys

 Hire and Training of undergraduate students to help with family recruitment at Nicklaus Children's Hospital

FIU

Surveys

- ✓ A short demographic questionnaire
- ✓ Surveys on children's activities and microenvironment (how many times the child put their hands in their mouth, what is the time spent inside the house or outside in nearby playground areas, etc.)
- ✓ Surveys about the child's development and behavior (BITSEA for 12-18 months and CBCL for children 18 months- 5 years)
- ✓ Surveys about parenting style and behavior
- ✓ Sampling procedure and materials (document and instruction video) provided to parents/caregivers

Surveys

 \checkmark

 \checkmark

 \checkmark

 \checkmark

NTA SOLUTION PROJECT

Understanding children exposure by chemicals in the environment

1-Recruitment/ Screening Per email/phone Duration: 1 hour

2- Remote Survey/ Interviews

4 sessions per year Each about 1 hour long

3-Collection of samples at home for analysis (household dust, soil, water, food items and child's urine)

> 4 times per year Total possible compensation: \$900

les

he

9O)

Aim 3: Statistical calculations combining both approaches for accurate estimation of soil and dust ingestion rate by children.

- ✓ Goal to combine statistical calculations derived from the tracer chemical studies and the data obtained from the activity pattern studies applied to the SHEDS-HT model
- ✓ We will use an overlapping index for quantifying similarities or differences between the soil and dust ingestion distributions estimated by the calculations derived from the tracer studies and SHEDs models.
- ✓ Multiple linear regression will be performed to evaluate differential soil and dust ingestion rate in children of different socio-economic status and race/ethnicities.
- ✓ Age-dependent distributions as well as seasonal variations for soil/dust ingestion rates will be evaluated in this study

Be WorldsAhead

Overall Workflow

Methods – Instrument / Screening

Liquid Chromatography- Orbitrap MS (Thermo Q-Exactive)

Analytical Column: Hypersil GOLD aQ Dim (mm) 100 x 2.1x 1.9 μm

Mobile Phase: Acetonitrile and 0.1% Formic Acid

- Source : H-ESI
- Resolution: 140,000
- Full scan: 100-800 m/z
- Positive and Negative modes
- MS2 for confirmation: NCE 30
- Mass tolerance: <5 ppm

Spray Voltage (V)	5000
Capillary Temperature (°C)	350
Sheath Gas (arbitrary units)	30
Aux Gas (arbitrary units)	2
S-Lens RF Level	50

Data processing for NTA

The data analysis usually includes steps such as peak-picking, blank subtraction, componentization, molecular formula generation, isotopic pattern comparison, evaluation of adducts, and the assessment and comparison of fragmentation patterns.

Databases:

- ACToR: Aggregated Computational Toxicology Resource
- DrugBank
- EAWAG Biocatalysis/Biodegradation Database
- EPA DSSTox
- EPA Toxcast
- FDA UNII NLM

Detailed Screening Process

Raw files, duplicate analysis, and post-processing with Compound Discoverer 3.1

Apply intensity threshold and other filters

Peak Quality inspection

Apply log Kow model

List of

Features

Schymanski, et.al (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. *Environmental Science and Technology*, *48*(4), 2097–2098.

Confidence level 2 features

Quality Control

ſ	-	ł	ł	T	1
Ľ	T	Ľ	1	4	

Compound	log Kow
Caffeine	0.16
lincomycin	0.29
sulfamethoxazole	0.48
trimethoprim	0.73
carbamazepine	2.25
diltiazem	2.79
atrazine	2.82
diphenhydramine	3.11
sucralose	-1
hydrochlorothiazide	-0.1
acetaminophen	0.22
diclofenac	4.02
gemfibrozil	4.77
mefenamic acid	5.28

Ng B, Quinete N, Gardinali PR. 2020 Sci Total Environ 713:136568.

Selection of internal standards

Internal Standard Name	# of Samples Detected
aetaminophen-d3 (+)	19
duktuazen-d3 (+)	6
norethindrone-d6 (+)	20
paroxetine-d4 (+)	5
sertraline-d3 (+)	7
triamterene-d5 (+)	20
sulfamethoxazole-d4 (+)	20
trimethoprim-d9 (+)	22
albuterol-d9 (+)	22
amitriptyline-d6 (+)	20
atenolol-d7 (+)	22
carbamazepine-d8 (+)	18
fluoxetine-d5 (+)	13
metoprolol-d5 (+)	20
valsartan-d3 (+)	22
verapamil-d6 (+)	11
almlodipine-d4 (+)	7
ibuprofen-d3 (-)	7
glipizide-d11 (-)	19
hydrochlorothiazide-13C, d2 (-)	10
warfarin-d5 (-)	21
gemfibrozil-d6 (-)	18

D3-Norcocaine

Online-SPE vs Direct Inject

- Online-SPE
 - Water and Urine
 - Automated extraction
 - **20 min run**
- Direct Inject
 - Soil, Dust, and Food
 - Manual extraction
 - 12 min run

Water Samples Collection and Analysis

- Tap or bottled water
- Online-SPE
- 10 mL of samples with little sample preparation

Visualization of the data: Van Krevelen Diagram

Ng, B., Quinete, N. and Gardinali, P. (2022), Differential Organic Contaminant Ionization Source Detection and Identification in Environmental Waters by Nontargeted Analysis. Environ Toxicol Chem, 41: 1154-1164. <u>https://doi.org/10.1002/etc.5268</u>

- A VKD is a plot of the H:C against the atomic ratio of oxygen to carbon (O:C) of a specific compound. This further separates compounds based on their degree of saturation (H:C ratio) and by oxygen-containing classes (O:C ratio).
- Theoretical Van Krevelen diagram of selected contaminants of concern taken from the US Environmental Protection Agency's DSSTox library.

Water samples Venn Krevelen Plot

 Aromatic hydrocarbons
 PCBs
 PEG/PPG
 Surfactants
 Pesticides, bisphenols and phthalates
 PBDEs
 PFAS

Water samples

788 features detected in water

20 unique features detected in common

TYPE OF CHEMICALS IN DRINKING WATER

■ industrial
natural product
■ Other
Food additive
Pesticide
Pharmaceutical/Drug

Compound	DF	Peak Area
Jasmone	100	2.63E+09
6-Phenyl-1-hexanol	80	1.18E+09
4-Ethoxy ethylbenzoate	100	8.64E+08
Isophorone	80	8.27E+08
Valerophenone	80	5.5E+08
Meleagrin	70	3.76E+08
Cuminaldehyde	60	1.38E+08
vanillyl nonanoate	50	9.32E+08
3721	50	1.5E+09

Urine Collection and Analysis

• Dilution factor of 2, 5, 10, 20, and 50

Unhydrolyzed

- 1:20 dilution with LC grade water
- Online-SPE

Hydrolyzed

- Hydrolysis overnight (37°C)
- β-glucuronidase/arylsulfatase enzyme
- 1:20 dilution with LC grade water
- Online-SPE

Determination of urine dilution factor

 If the retention time shift is more than 0.5 min or the peak area varies more than 50 % of the average, it would be considered as retention time fail or peak area fail.

Dilution factor	QC detected	Retention time failed	Peak Area failed
2	12	33.3 %	58.3 %
5	13	23.1 %	46.2 %
10	13	15.4 %	61.5 %
20	15	13.3 %	20.0 %
50	14	21.4%	14.3 %

Comparison Hydrolyzed vs Unhydrolyzed

Urine samples Venn Krevelen Plot

Aromatic hydrocarbons
 PCBs
 PEG/PPG
 Surfactants
 Pesticides, bisphenols
 and phthalates
 PBDEs
 PFAS

Urine samples

industrial

Other

■ PCP

Pesticide

Multiple uses

natural product

Pharmaceutical/Drug

5121 features detected in urine samples **2**65 unique features detected

265 unique features detected in common

Compound	DF (%)	Peak Area
Tetradecanedioic acid	75	5.65E+10
Hippuric acid	88	3.64E+10
Piperanine	75	3.49E+10
S-NONYL-CYSTEINE	63	2.83E+10
7-Methylguanine	63	2.01E+10
Cyclo(Ala-Ile)	63	1.86E+10
N-Phenylacetylglutamine	75	1.23E+10
Capryloylglycine	75	1.03E+10
N2,N2-Dimethyl-guanosine	75	1E+10
Glycocholic acid	100	4.51E+08
Glycoursodeoxycholic acid	100	1.6E+09
Triticonazole	100	2.6E+09

CHEMICALS IN URINE

Be WorldsAhead

Food extraction: QuEChERS

Food extraction: QuEChERS

- Original proposal
 Methanol for organic solvent
 Cloudy after PSA/GCB clean up
- Acetonitrile
 - Replace Methanol with ACN

Food extraction: QuEChERS

Compounds	log Kow	monitored ions (m/z)	detection mode	ACN	МЕОН	ACN/MEOH
sucralose	-1	395.007	-	514975	138609	3.7
hydrochlorothiazide	-0.1	295.957	-	30492507	6973708	4.4
caffeine	0.16	195.088	+	173896997	40041329	4.3
lincomycin	0.29	407.221	+	69941827	226729204	0.3
sulfamethoxazole	0.48	254.059	+	510609753	302274447	1.7
trimethoprim	0.73	291.145	+	798986842	293952394	2.7
norcocaine	1.96	290.139	+	2508331676	651262182	3.9
carbamazepine	2.25	237.102	+	1220011570	746093554	1.6
diltiazem	2.79	415.169	+	2009629433	150171042	13.4
atrazine	2.82	216.101	+	4379749352	2080194051	2.1
diphenhydramine	3.11	256.17	+	2955706292	1517110694	1.9
diclofenac	4.02	294.009	-	122921945	34465135	3.6
fluoxetine	4.65	310.141	+	3852011163	1149551446	3.4
gemfibrozil	4.77	249.15	-	37854518	2360833	16.0
mefenamic acid	5.28	240.103	-	105742980	32179184	3.3
sertraline	5.29	306.081	+	732006025	98904061	7.4
clotrimazole	6.26	345.115	+	266510368	82800462	3.2

Food samples Venn Krevelen Plot

 Aromatic hydrocarbons
 PCBs
 PEG/PPG
 Surfactants
 Pesticides, bisphenols and phthalates
 PBDEs
 PFAS

Food samples

2552 features detected in food samples in common

Compound	DF	Peak Area
Piperine	60	7.28E+10
Linoleoyl Ethanolamide	70	3.44E+09
Choline	90	3.12E+09
α-Eleostearic acid	50	1.71E+09
1-(P-TOLYL)-1-		
CYCLOHEXANECARBONITRILE	50	1.21E+09
3-hydroxy-N-(1-hydroxy-3-methylpentan-		
2-yl)-5-oxohexanamide	60	1.1E+09
UNII:TYL476W27Y	50	7.71E+08
Makomotine C	50	7.34E+08
2-(Dipentylamino)-1-(1,2,3,4-tetrahydro-		
9-phenanthrenyl)ethanol	50	7.24E+08
4-Indolecarbaldehyde	70	1.56E+08

Soil/Dust extraction: ASE vs USE

Accelerated Solvent Extraction (ASE)

- Heat and solvent
- Automated and less dry down
- Ultrasonic Extraction (USE)
 - Manual
 - More solvents and more tedious

Soil extraction: ASE vs USE

Compounds	log Kow	monitored ions (m/z)	detection mode	USE	ASE	ASE/USE
sucralose	-1	395.007	-	10384	526984	50.7
hydrochlorothiazide	-0.1	295.957	-	1203866	14859506	12.3
caffeine	0.16	195.088	+	6783448	34914652	5.1
lincomycin	0.29	407.221	+	44299853	52728722	1.2
sulfamethoxazole	0.48	254.059	+	47537279	68819583	1.4
trimethoprim	0.73	291.145	+	106036728	106687512	1.0
norcocaine	1.96	290.139	+	17971940	281767662	15.7
carbamazepine	2.25	237.102	+	149163592	213054956	1.4
diltiazem	2.79	415.169	+	442866	107161515	242.0
atrazine	2.82	216.101	+	218078938	637646920	2.9
diphenhydramine	3.11	256.17	+	73903594	56458058	0.8
diclofenac	4.02	294.009	-	21763	20481873	941.1
fluoxetine	4.65	310.141	+	52192443	44356941	0.8
gemfibrozil	4.77	249.15	-	20600183	3146426	0.2
mefenamic acid	5.28	240.103	-	31454	34239014	1088.5
sertraline	5.29	306.081	+	16515867	38614739	2.3
clotrimazole	6.26	345.115	+	5526113	5904298	1.1

Van Krevelen Plot for Soil samples

Soil samples

2239 features detected in soil samples \longrightarrow 107 unique features detected

16

2% %

29%

107 unique features detected in common

		Compound	DF	Peak Area
TYPE OF CHEMIC	CALS IN SOIL	Caprolactam	90	4.84E+10
2%	■ industrial	2,2-Methylenebis(4-ethyl-6-tert-butylphenol)	90	3.49E+09
/ 14%	natural product	(9Z)-9-Sulfo-9-octadecenoic acid	100	3E+09
	■ Other	BOC-GLU-OTBU	100	2.03E+09
	- PCP	1,7-Hydroxy-3-methylxanthone	90	1.3E+09
35%	Pesticide	Pentamethylmelamine	90	9.09E+08
	Pharmaceutical/Drug	[6]-Gingerol	90	8.68E+08
	DEAS	N,N'-Diphenylguanidine	60	8.64E+08
	FFA5	3-O-Butyryl-1,2-O-isopropylidene-alpha-D- glucofuranose	80	7.71E+08
		1-Cyclohexyl-2-azetidinecarboxylic acid	80	6.83E+08

Van Krevelen Plot for Dust samples

Aromatic hydrocarbons
 PCBs
 PEG/PPG
 Surfactants
 Pesticides, bisphenols

 and phthalates
 PBDEs
 PFAS

Dust samples

3218 features detected in soil samples **maps** 85 unique features detected

85 unique features detected in common

		Comp
CHEMICALS IN	DUST	Dodecy
8% 13%	■ industrial	Myristyl
8%	natural product	Bis(2-eth phtha
	■ Other	Pentadecy
	PCP	Sulf
25%	Surfactant	Linolei
	Phthalate	Haplofu
8% 9%	Multiple uses	Tripropy
		Haplofi

Compound	DF	Peak Area
Dodecyl sulfate	64	3.68E+10
Myristyl sulfate Bis(2-ethylhexyl)	73	2.39E+10
phthalate Pentadecyl hydrogen	73	9.83E+09
sulfate	55	5.36E+09
cetyl sulfate	73	4.1E+09
Linoleic acid	55	2.85E+09
Haplofungin D	82	2.2E+09
Tripropyl citrate	82	1.88E+09
Haplofungin F	82	2.19E+09
Azelaic acid	55	1.09E+09

Combined results – Group 1

Pharmaceutical

Oseltamivir

Food vs Urine	Sources		Dust vs Urine	Sources
(±)-Abscisic acid	Natural product	36912	2 15 18-Hexaoxaicosane)_
3-hydroxy-N-(1-hydroxy-3- methylpentan-2-yl)-5-		1,20-dic	ol	Industrial
oxohexanamide	Natural product		(vdocanovi) ovvjdocanoju	
4-Indolecarbaldehyde	Industrial Other	acid	yuecanoyijoxyjuecanoic	Natural product
Dobutamine F-36316 C	Pharmaceutical Natural product	Food Dust Piperan	nine	Pharmaceutical PCP (Bleaching age Surfactant
Hexanoylcarnitine	Natural product Food Additive/natural	12 5 Tetraac Uric aci	cetylethylenediamine id	Cosmetics)
Naringenin	product	Unine on our		
Pactamycin	Pharmaceutical	265		
Phenacetin	Pharmaceutical/PCP			
Piperanine	Pharmaceutical	Soil		
Streptazone F	Natural product	107 20		
			Water vs Urine	Sources
Soil vs Urine	Sources		N	atural product/Food
1-(Tripropoxymethoxy)pro	opane Other	Cumina	aldehyde A	dditive
Caprolactam	Industrial	Isophor	rone Ir	ndustrial
Dibutyl ethylmalonate	Natural product	Naphth	naleneacetamide P	esticide

Conclusions

- Recruitment of 73 children to date
- Extractions and Analysis

- QuEChERS, ASE, and Urine Hydrolysis
- A total of 242 samples were collected and 180 were analyzed
- Initial results promising
 - Overlap of unique compounds in dust and soil and urine was observed
- Further Analysis to be conducted

Future Work

- Intensify recruitment with the training of more research assistants
- Continue collection of samples and analysis
- Post-processing of analyzed samples
- Submission of the first manuscript
- Creation of an online database

Statistical Analysis to identify specific tracers and models to be used for soil and dust ingestion rate.

Be WorldsAhead

Acknowledgements

- Lab Group and Co-Pls
- EPA Award: EPA-G2020-STAR-D
- Institute of Environment @ FIU
- https://case.fiu.edu/research/nta-solution/

47

nsoaresq@fiu.edu

Be WorldsAhead

Thank you for your Attention!

48

nsoaresq@fiu.edu

