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ABSTRACT. In this paper we discuss two different topics concerning .4-harmonic
functions. These are weak solutions of the partial differential equation

div(A(z,Vu)) =0,

where (A(z,£),£) ~ [£|P~! for some fixed p € (1,00). First, we present a new
approach to the regularity of .A-harmonic functions for p > n — 1. Secondly, we
establish results on the existence of nontangential limits for .A-harmonic functions in
the Sobolev space W19(B), for some ¢ > 1, where B is a ball in R™. Here q is allowed
to be different from p.
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§1. Introduction.

In this paper we study weak solutions of the partial differential equation
(1.1) div(A(z,Vu)) =0,

where (A(z,£),€) =~ [€|P7!; here 1 < p < oo. Solutions of (1.1) are called A-
harmonic functions. The prototype of these equations is the p-Laplace equation

div(|VulP2Vu) = 0.

Two topics will be discussed. When p > n — 1, where n is the dimension
of the ambient space, we will present a simple approach to the regularity of weak
solutions of (1.1), including the Harnack inequality for nonnegative solutions. We
do not use the Moser iteration method as in Serrin [S], but rather exploit the fact
that for p > n — 1, the Sobolev embedding theorem on spheres and the maximum
principle is all that is needed. Our key observation is that weak solutions of (1.1)
are monotone in a certain weak sense as described in [M]. In the borderline case
p = n this program is essentially done in [GLM].

In the second part of the paper we consider the case of general 1 < p < co and
present a generalization and simplification of a number of theorems on the existence
of nontangential limits of weak solutions of (1.1) in a ball B with finite ¢-Dirichlet

integral
/ IVul? dz,
B

for some ¢ > 1. Note that ¢ is allowed to be different from p. The first result in this
direction goes back to Beurling [B], who proved that if u is a harmonic function
with finite Dirichlet integral in the unit disk B?, then the set on OB? where u
fails to have a nontangential limit has logarithmic capacity zero. In Carleson’s
book [C] Beurling’s result is extended to continuous Sobolev functions with finite
(even weighted) Dirichlet integral where the logarithmic capacity is replaced by
an appropriate Riesz capacity and nontangential limits by radial limits. If the
function is, in addition, meromorphic this statement also holds for nontangential
limits. Nowadays the existence of radial limits for continuous Sobolev functions is
well known in any dimension, see [Mil] and [R], as well as the fact that in this
generality a function need not have a single nontangential limit as it can be seen
in [C] for the case n = p = 2.

It seems that to pass from radial to nontangential limits we need to work with
solutions of elliptic partial differential equations. Notice, however, that for p > n—1
monotonicity of the functions in the Sobolev class is all it is needed as is shown in
[MV]. The linear case is well understood [Mi2],[NRS]. Our approach to study the
boundary behavior is based on the weak Harnack inequality and pointwise regularity
of Sobolev functions, and so, we are able to obtain the existence of nontangential
limits in the framework of the nonlinear potential theory of A-harmonic functions.



In the last section of the paper we apply our methods to the components of
quasiregular mappings and improve a result of Martio and Rickman [MR] on the
existence of nontangential limits of quasiregular mappings with restricted growth
on their counting function.

§2. Regularity of solutions for p > n — 1.
Let a(z) be a measurable function and § a constant such that for a.e. z € R",

0< a(z) < B < oo

Let A:R™ x R™ — R" be a mapping satisfying the following assumptions:

(2.1) the mapping ¢ — A(z, {) is measurable for all £ € R",
(2.2) the mapping ¢ — A(z,£) is continuous for a.e. z € R",
for all £ € R™ and a.e. z € R"

(23) A(z,€) - € 2 a(z)El

and

(2.4) |A(z,6)] < BlEP~.

Conditions (2.1) and (2.2) insure that the composed mapping = — A(z,g(z)) is
measurable whenever ¢ is measurable. The degenerate ellipticity of the equation is
described by condition (2.3). This is the weakest ellipticity condition that still gives
the (weak) maximum principle. Finally, condition (2.4) guarantees that A(z, Vu)
can be integrated against functions in T/Vlt’Cp(Q) with compact support.

Usually, it is also required that a(z) > a > 0 for a. e 2 € R*. We do not
make this assumption at this moment.

A function u € I/Vli’cp(ﬂ), where {2 is a domain of R™, is A-harmonic if it is a
weak solution of equation (1.1); that is, for every ¢ € C§°(€2) we have

(2.5) /Q A(z,Vu(z)) - Vé(z) dz = 0.

A simple approximation argument shows that (2.5) then holds for compactly sup-
ported functions in W1P(Q).

Recall that a function u € W,-?() is weakly monotone [M] if for every rel-
atively compact subdomain Q' of Q and for every pair of constants m < M such
that

(m—u)t € Wy"(Q)

and
(u — M) € Wy P(Q),
we have
(2.6) m < u(z) < M for a.e. z € Q.



Lemma 2.7. A-harmonic functions are weakly monotone.

Proof. Using (u — M)¥ as a test function in (2.5) we obtain

/ A(z,Vu(z)) - Vu(z) dz = 0.
Q' n{z:u(z)>M}

It then follows from (2.3) that

/ a(z)|Vu(z)|P dz <0.
Qn{z:u(z)>M}

Therefore, Vu(z) = 0 for a. e. 2 € Q@' N {z : u(z) > M}. This implies that
V(u — M)* vanishes a. e. in ', and thus (v — M)t must be the zero function in
¥'. The proof for the lower bound of u is analogous. O

We can now apply the results (whose proofs only employ the Sobolev embed-
ding theorem on spheres) in [M] on weakly monotone functions to obtain:

Proposition 2.8. Let u be an A-harmonic function in a domain Q.
Suppose that n — 1 < p < n. Then u is locally bounded with

(2.9) (ess-0scp, (zq)u)P < C(n,p)rp][ |Vul? dx
B(.’to,ZT)

whenever B(zg,2r) C Q.
Moreover, u is continuous in 2, except for a set of p-capacity zero. In the case
p = n, u is continuous in ). Moreover,

(2.10) (05CB(z0,mu)" < C(n)(log(E))_1 / |Vu|™ dz
r B(zo,R)

whenever B(zg,R) C Q and r < R.

We observe here that in the case p < n there are examples of weakly monotone
functions that are not continuous (see [M]).

On the other hand, .A-harmonic functions are continuous in the uniformly
elliptic case

(2.11) 0 < a<a(e),

since they are always Holder continuous. This was proved, together with the Har-
nack inequality for nonnegative A-harmonic functions, by Serrin [S] for the complete
range of p’s, 1 < p < oo.

We now give a simple proof of the Harnack inequality for nonnegative A-
harmonic functions, n — 1 < p < n, assuming the uniform ellipticity condition
(2.11).

First we need a lemma which is trivial for continuous monotone functions but
requires some work for weakly monotone functions.



Lemma 2.12. Let u € W}})CP(Q), p > 1, be a nonnegative weakly monotone
function and ¢: Rt — R be Cl-smooth, satisfying ¢' > 0 and onto, such that
V(gou)e L (). Then ¢ o u is weakly monotone.

loc

Proof. Let ' be a relatively compact subdomain of Q@ and M € R such that
($(u) — M)t € W P(). We have to show that

(2.13) #(u(z)) < M fora.e. z €.

Choose o € Rt such that ¢(a) = M and set ur = min(u, k) for a positive
integer k. Then, uy € Wy'P(Q') and 0 < ux < u. By the monotonicity of ¢ we
conclude that

0 < ($uk) — ¢(@))* < (¢(u) - $(a))7,
which implies (¢(ux) — ¢(a))T € Wy P(Q'). Select a sequence of nonnegative func-
tions @ € CS(Q )N WP () such that ¢ — (d(ur) — (a))t in WHP(Q'). Note
that since u is bounded, it is possible to choose this sequence so that it is uniformly
bounded in ©'. It then easily follows that ¢~ o ¢, — ¢! ((¢(ur) — ¢(a))t) in
WHP(Q'). Note that ¢ 1odm, > ¢71(0) and ¢~ 0@, —$~1(0) has compact support
in '. We conclude that
67 ((8(ue) — $(a))*) — 71(0) € Wy ().

At this point observe that for some constant C(¢,a, k) > 0 depending possibly on
¢, a and k, we have

¢7 ((d(ur) = d(a))™) = ¢71(0) 2 C(4, &, k) ($(ux) — ¢(a))

whenever uy > a. By possibly modifying C(4, a, k) > 0 we obtain
0 < C(,a, k) (ue — )t < 67" ((d(ur) — d(e))™) — 47(0).

Therefore, we conclude that (up — o)t € WHP(Q'). Letting k — oo we deduce
that (u — a)t € WHP(Q)'). Since u is weakly monotone we must have u(z) < a
for a. e. = € ', which implies (2.13). The proof for the lower bound of ¢ o u is
analogous. [J

Lemma 2.14. Assume that (2.11) holds and that n — 1 <p <n. Letu > ¢ >0
be A-harmonic in Q. Then logu belongs to W'li’cp(fl) and is weakly monotone.

Proof. We start with a well known trick. Let B(zg,2r) € Q andlet n € C§°(B(zo,2r))
be a nonnegative test function. Using the function nPu!~? in (2.5) and applying
(2.11) we get

/ |Vlogul? dz < ¢(n,p, —B~) |Vn|?P dz.
B(z,27) & JB(z0,2r)

Choosing n(z) = 1 for © € B(xo,r) we get
(2.15) / |ViogulP dz < ¢(n,p, é)7‘"'”.
B(zo,r) a

The conclusion now follows from the previous Lemma. O



Theorem 2.16. Assume that the uniform ellipticity condition (2.11) is satisfied
and that we are in the rangen—1 < p < n. Let u > 0 be a nonnegative A-harmonic
function and B a ball such that 4B C ). Then,

B, .
(2.17) 2161;1;11(:10) < C(n,p, a—);ggu(w),

where C(n, p, g) is a constant depending only on n, p and g

Proof. Let € > 0 and consider the A-harmonic function v = u + €. It is enough to
prove estimate (2.17) for v with a constant C(n, p, g) independent of e. By Lemma
(2.14), logv is weakly monotone and

(2.18) / |Vlogv|? dz < c(n,p,E)IBll-”/”.
2B @
By virtue of Proposition 2.8, log v is bounded and
(2.19) (ess-oscp(logv))? < C(n,p)IBlp/"][ |V logv|? dz.
2B
From (2.18) and (2.19) it follows that
B
ess-oscg(logv) < C(n,p, =)
a

and exponentiating we obtain (2.17) O



§3. Existence of Nontangential Limits

In this section we prove results on boundary limits for Dirichlet finite .4-harmonic
functions.

First we show that p-Dirichlet finite A-harmonic functions u, defined in the
unit ball B® of R™, have nontangential limits everywhere on the boundary of the
unit ball except possibly on a set E of Bessel By ,-capacity zero, 1 < p < n. In this
work we will use the Bessel B, p-capacity for technical reasons. We refer the reader
to the book by Ziemer [Z] for the definition and properties of the Bessel capacity
Bj,p- At this point, we would like to remark that all the p-capacities are equivalent
in the sense that a set with one of the standard p-capacities zero will have all the
other p-capacities zero. Thus, in the rest of the paper we will say p-capacity zero
without specifying the capacity that we are using.

The case p > n is not interesting because then u is continuous up to the
boundary by the Sobolev embedding theorem. Recall that an A-harmonic function
u of B™ is continuous in B™.

Theorem 3.1. Let v be an A-harmonic function in the unit ball B® of R™ ( no
restriction on the type of A). If [p, |Vu(z)|P de < oo for some 1 < p < n, then
the function u has nontangential limits on all radii terminating outside a set of
p-capacity zero.

The proof of theorem 3.1 is based on the following two well known lemmas.

Lemma 3.2. [Z, Theorem 3.3.3] Let v € W1 P(R™), 1 < p < n. Then

(3-3) lim lu(y) — u(z)|” dy =0
r=0JB(z,r)

except for x in a set E C R™ of p-capacity zero.

Lemma 3.4. [HKM, Theorem 3.34] Let u be an A-harmonic function in B", and
fix p > 0. Then, there exists a constant C such that for each ball B = B(z,r) C B®
and alla € R

sup |u(y) — a wly) — alP 1/p
up u(s) 1sc<]{9|<y) P dy)/,

where 1B = B(z,r/2).

Proof of Theorem 8.1. By [R] and [V, 16.8] (see also [MV]) we may assume that
1 < p < n. Since [, |Vu(z)|P dz < oo, it follows from the Poincaré inequality
that v € W1 P(B"). Hence, by standard extension theorems, we may assume that
u € WHP(R™). We show that u has a nontangential limit for each z € OB" for
which (3.3) holds. The claim then follows from Lemma 3.2.
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Fix an ¢ € dB™ for which (3.3) holds. Now, for any 0 < ¢ < 1, Lemma 3.4 gives
D) —u@l <O (L luy) -~ u(o) dy)”
z,t

where B, ; = B(ti—i—l,(l —t)/2), and thus

Ju(t =

Ju(tiT) = u(@)] < O ( [uv) ~ u(z)[P dy)’*.
|| B(z,2(1—1))
We conclude from (3.3) that u has a radial limit at z.
For a point € OB™ we denote by C(z) the Stolz cone at z with a fixed given
aperture. Then we can find a constant ¢, > 1, depending only on the aperture and
n, such that for all y € C(z)

ly — 2| < ea(1 = |yl)-

Next, we show that the radial limit at z we found above, is attained through any
standard Stolz cone C(z); thus this radial limit is actually a nontangential limit.

Pick z1 € C(z). Then, we have that

B(z1, (1~ [210)/2) C Bz, (ea + 3)(1 ~ ler )

for each z; € C(z), and hence, by Lemma 3.4,

lu(z1) —u(z)| < C ( lu(y) — u(@)” dy)'/?
B(z1,(1~[21])/2)

<c(f [u(y) — u(@)|P dy)!/?.
B(z,(cnt3)(1=]z1])

The claim follows by applying (3.3). O

In Theorem 3.1, A-harmonicity was not essential but merely the version of the
weak Harnack inequality (Lemma 3.4) satisfied by the solutions to a large class of
elliptic nonlinear P.D.E.’s.

We continue by showing that Dirichlet finite A-harmonic functions also possess
“tangential” limits. By saying tangential limits of order v > 1, we mean that u has
a limit as y — w € 0B"™ with (1 — |y|) > C |y — w|” for some constant C.

Theorem 3.5. Assume that v is an A-harmonic function in B®, and suppose that
/ |Vul?P dz < oo,

forsomel<p<n.Ifl<p<nandl<~< ﬁ—:%, then u has tangential limits of

order v outside a set of vanishing H*-Hausdorff measure, A = y(n — p). Ifp = n,
then there is a set of vanishing n-capacity such that u has tangential limits of any
order outside this set.



Remark 3.6. For harmonic functions, this result is due to Mizuta [Mi3]. Mizuta
also allows weights of the type w(z) = (1 — |z|)%, a < p— 1. We will comment on
results with weights of this type below.

We record the following lemma, see [Z, Corollary 3.2.3], [Mi3, Lemma 2].

Lemma 3.7. Suppose that u € WP(B") for some 1 < p < oo, and let 0 < A <
n — 1. Then for any w € OB"®, except for w in a set E C 0B" of H*-Hausdorff
measure zero

fB(w,r)ﬁ]B" [Vu(y)[? dy
m =0

li
Y

r—0

Moreover, for any w € 0B", except for w in a set E C OB" of n-capacity zero,

1
lim (log —)"~* / IVu(y)|? dy = 0.
r—0 r B(w,r)nB?

Proof of Theorem 8.5. Let first 1 < p < n. Assume that u has a radial limit at
w € OB™, and suppose that

Vu(y)|? dy
e B nne (V@I dy

r—0 r‘r(n-—p)

By [R] and Lemma 3.7, this holds for every w € O0B", except possibly for a set
of v(n — p)-Hausdorff measure zero. Fix y € B* with lw —y| < 1, and set By =
B(y,(1 = |y|)/2). Then, by Lemma 3.4,

sup u(z) = up, | < C(f lu(e) - us, | do)' .
3B, B,

Here and in what follows, all the constants will be denoted by C. Using Poincaré’s
inequality we conclude that

sup |u(z) —up,| < C(][ |u(z) — up, | d:c)l/”
1B, B,

2

(3.8) <c-p)* ([ IVu@l dor,
Hence
(3.9) oscypg u < C(1— ) (/B |Vu(z)|P dz)/?.

9



Since By C B(w,r) for r = 2|w — y|, we arrive at

oscy 5 u < C(1— [y 55" ( / Vu(z)l? de)'/?
2 ¥ By

(3.10) <ca- ([ [Vu(@Pdo.
B(w,r)nB"

Let zo be the point on the radius to w belonging to ™~ !(w, |w — y|). By the
above argument, (3.9) holds with y replaced by y', for each y' € S™ (w, |w —y|) N
B". Pick points y = yo,- -,y = z¢ belonging to $™ ! (w, |w —y|) so that the balls
%Byj form a chain of balls. By a chain of balls we mean that the intersection of
any pair of consecutive balls is non-empty, the diameters increase in a geometric
sequence, and only consecutive balls overlap. Then (3.10) yields

k
u(zo) — u()] < ) fu(y;) — ulyj—1)|

i=1

k -n
<Cc) (- ijl)””f‘(/B |Vu(z)[P dz)'/

<Ca-w)F ([ |Vu(e)p da).
B(w,r)
Recall that u(zo) tends to a limit as 9 — w radially. Since

. fB(w,r) |Vu(z)|P dz
lim

r—0 r‘Y("“P)

?

and r = 2|w — y|, the claim follows (we require that (1 — |y|) > C |w — y|).

Let us finally consider the case p = n. Then (3.9) reads
0SC1 gy U < C(/ |Vu(z)|™ d.’l})l/n,
BV

and by a chaining argument as above we obtain

[u(zo) = u(y)l < Y luly;) — u(yj-1)|

Jj=1
k
<C Z(/ |Vu(z)|" dz)/™
j=1 7 By;

C kn_l(/ |Vu(z)|® de)'/™
U= By;

IA

< Ck™ ( V()| dz)/™.
B(w,r)nk"

10



Here we used the fact that no point in B® belongs to more than C(n) of the balls
By, associated with our chain. We leave it to the reader to check that we can take
Ek<C log(T-l_Lﬂ)' The claim then follows as in the first part of the proof applying
Lemma 3.7 and [R]. O

Theorem 3.11. Let u be A-harmonic in B*. If
/ |[Vu(z)|? (1 = |z|)* dz < oo,
]Bn

where 1l < p < nandp—n < a < p— 1, then u has tangential limits of order

l<y< n_'f;ia outside a set of vanishing v(n — p + «)-Hausdorff measure on 0B".

Proof. We replace dz by w(z)dz, w(z) = (1 — |z|)®, in Lemma 3.7. Then (3.9)

reads

oscpsu < C(1 = |y)) 5 (/ |Vu(z)P dz)t/?
Bll

—-n
P

<Cu-)F* ([ 1Vu@P u(e) ey

<ca-1)= (f IVu(@)[? w(z) da)!/7.

(w,r)nB»

The existence of radial limits follows from [Mi2], and then the rest of the argument
is analogous to the proof of Theorem 3.5. [

11



§4. Nontangential limits for Quasiregular Mappings.
Let WL*(B") denote the local Sobolev space of functions in L} .(B™) whose distri-

loc
butional derivatives belong to L (B"). Consider a mapping

f:B* - R"

whose coordinate functions belong to W,*(B"”). Denote by J f(z) the Jacobian

loc

determinant det(D f(z)). For a.e. € B® the dilatation of f is defined by

|Df(z)|"
Jp(z) °

and it satisifies K(z) > 1. If K(z) € L*°(B"), then f is said to be a quasiregular
mapping,.

It is well known, see [HKM], that the coordinate functions of a quasiregular
mapping are A-harmonic functions of type n. Therefore, all the results of the
previous section apply to quasiregular mappings.

Let E be a subset of the unit ball B* in R™. We define n(y; f, E) = card{z €
E: f(z) = y}, and N(f,E) = supycgn(y; f, E). N(f,E) is called the multiplicity
function of f. In this section we prove that a certain restriction on the growth of
the multiplicity function of f implies the existence of nontangential limits. More
precisely, we establish:

K(z) =

Theorem 4.1. Let f be a quasiregular mapping of B", and suppose that, for some
0<a<n—-1,N(f,B0,r)) <C(1-r)" forall0<r < 1.

If | f(z)] £ C (1 — |2])™" for some 0 < b < oo, then f has nontangential limits
at all points on the boundary of the unit ball except possibly on a set of p-capacity

zero, for any 1 < p < Tra-

Before proving Theorem 4.1, let us make some remarks.

Remarks 4.2. 1) Nontangential limits at all points on the boundary of the unit
ball except possibly on a set of p-capacity zero is always better than nontangential
limits at all points on the boundary of the unit ball except possibly on a set of
(n —1)-Hausdorff measure zero, as long as p > 1. Because the Hausdorff dimension
of a set of vanishing p-capacity is at most n —p. Hence Theorem 4.1 extends a result
of Martio and Rickman [MR] according to which a bounded quasiregular mapping f
of B" satisfying the growth condition of Theorem 4.1 on the multiplicity function has
nontangential limits at all points on the boundary of the unit ball except possibly
on a set of (n — 1)-Hausdorff measure zero.

2) There are analytic functions of arbitrarily slow growth without a single
radial limit; see [ML]. Thus some condition on f is needed.

3) Notice that b plays no role. If f is quasiconformal, then |f(z)| < C (1 —
|z|)~?, for some b = b(n, K) < oo, and we may take a = 0. Therefore we recover

12



that quasiconformal mappings have nontangential limits everywhere except possibly
on a set E C OB" of p-capacity zero. As is well known, this holds for p = n, see
[V]. This appears to indicate that our conclusion is fairly sharp.

4) The main idea in the proof of Theorem 4.1 is to reduce our situation to
the case of a Dirichlet finite quasiregular mapping, and then apply results of the
previous section. Notice that f also has some “tangential” limits as seen by applying
Theorem 3.5 instead of Theorem 3.1 at the last step of the proof. The proof of
Theorem 4.1 shows that |Dg(z)|? is integrable for all 0 < ¢ < 1 for a bounded
quasiregular mapping g of B". For a related result on 4-harmonic functions see

Proof of Theorem 4.1. Fix 1 < p < %= For € > 0 define g(z) = z|z|*~!. Pick € > 0
so that h(z) = g(f(z)) satisfies
|h(z)] < C(1—|2)7*,

for some s > 0 with p < TTars

Then, h is a quasiregular mapping of the unit ball B". It easily follows that if
h(z) — z as = — w along @ C B", then also f has a limit as ¢ — w through Q.
Write Rj = {2:1-277 < |z| <1-27771} Now

> [ pr@lrds<cy ([ 1Dadepin o,
j=1 R; =1 R;

and by a change of variables [BI, 8.3] we arrive at

> [ IDhapds <CY ([ ny,h,By)dypin 2w
j=1"R; j=1 Jh(R;)

Since n(y, b, R;) < N(f,B(1 —27971)) and since h(R;) C B(0,C2%),
o0 [o'e) . . ~
> / IDh(z)P de < CY " 29++9% 979(%58) < oo,
=178 =1

because p < TTar3"

Therefore [g, \B(0,1/2) |Dh(z)|P dz < oo, and thus fp, |Dh(z)|P dz < co. Ap-
plying Theorem 3.1 to the coordinate functions of A we obtain the desired conclu-
sion. [J
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