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ABSTRACT. We study the sets of uniqueness of areally mean p-valent functions
in the unit disc. Namely, if f(z) is in this class and has the same angular
limitin a set £ on the boundary of the unit disc, we prove that if p is small
compared to the size of E then f{(z) is constant. We then construct an areally
mean p-valent function which shows that some condition on the size of the set
E must be imposed.

INTRODUCTION

The original F. and M. Riesz Theorem states that if a bounded analytic func-
tion in the unit disc A has the same radial limit in a set of positive Lebesgue
measure E in 8A then the function has to be constant.

Beurling [1, 3] showed that if we consider the class of univalent functions
in the unit disc, the same result holds if we replace a set of positive Lebesgue
measure by a set of positive logarithmic capacity in 8A.

We start by giving the definition of areally mean p-valent functions.

Definition 1. Let f(x) be a regular nonconstant function in A. Define
n(w) =n(w, A, f)
to be the number of roots of the equation f(x)=w in A, and write

1 2n .
PR =R, &, )= 5= [ n(Re")do.

Then if there exists a positive number p such that

R
/0 p(p)2pdp < pR?

for all positive R, we say that the function f (z) is an areally mean p-valent
function.

From now on we are going to denote this class of functions by AMP. This
class has been studied by several authors; good references are Hayman [5] and
Eke [4].

Let us consider now the following class of functions.
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Definition 2. Let f(x) be a regular function in the unit disc. If

17(2)P
s ()RR 4% 4y < o,

we say that f(z) € Dg. These functions are called functions of finite spherical
area.

It is not difficult to show that AMP ¢ Dg. Beurling [1] proved the following
theorem,

Theorem A. Suppose that f(x) € Ds and that
f(e”) =lim f(re”) = a,
r—

whenever €' € E, where E C dA.
We define

Sp(@) = {w: jw —a| < p},
Ap(@) = [~ (Bp(@)) = {z € A: |f(2) - o] < p},

lf(2)2 B
/ /A,(a) [T+1f(2)PF dxdy = 4,(a).

Ifnow cap(E)> 0 and limsuppﬁo[f';@] < oo, then f(z) is constant

and

Later Tsuji [9] gave a modified version of this theorem.

Carleson [2] proved that some condition on the limiting value o must be
imposed if we want to obtain a uniqueness result for the class Dg. He con-
structed a nonconstant function f(z) € Ds such that lim,_,; f(re'?) = 0 for
all e ¢ E c 9A, and cap(E) > 0.

Functions of finite spherical area are only apparently more general than those
in AMP. A function f belongs to Dg if and only if some bilinear transform
?{I—g for suitable, a, b, ¢, d belongs to AMP (possibly as a meromorphic func-
tion). For AMP 0 and oo are special points, while Dy is invariant under
bilnear transforms.

ue to the above remarks and using Carleson’s construction in [2], we shall
construct a nonconstant function f(z) in AMP for some P, such that f(z)
has the same angular limit in a set of positive capacity.

In the positive direction we will prove that if J(z) in AMP has the same
nontangential limit in a set E of positive capacity and if p is small compared
to the size of E, then f(z) is constant. We will have to make precise the above
statement in Theorem 1.

We start with some preliminaries. Let J(z) be in AMP, such that
lim,_ e f(z) = a nontangentially for all ¢/ ¢ E and cap(E) > 0. Now we
want to reduce the problem to the case in which Jf(z) is zerofree in some sim-
ply connected domain Q ¢ A. It is known [5] that any areally mean p-valent
function can have at most p zeros counting multiplicity. Let z;, j=1,... » k
be the points for which f(z;) = 0. We define To = max;¢jck |zj|. Let Q be
the simply connected domain given by T

Q={z:n<|zji< 1, |argz| < n}.
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Then f(z) is areally mean p-valent in Q, f(z) #0, and f(z) has the same
nontangential limit o on E, where E ¢ 9Q and cap(E) > 0.

Then for each positive integer n, g(z) = f1/*(z) is single valued and o!/*
might take n different values. We call these values «;'n, i =1,...,n. Let
Ein CE, i=1,...,n, be the set such that lim,_ v g(z) = a; , for any
e’ € E; n. Itis clear that E = |J._, Ei , and the E; , are disjoint. Since
cap(E) > 0, there exists at least one i € {1, ..., n} such that cap(E; ») > 0.
Among those, we choose Ej, , with the property that,

cap(Ej,,n) = Xrgnia<x" cap(E; ») > 0.

Let y(Ei,,») be the Robin constant of the set Ej, .

Let f(z) in AMP be zer regg let 0 < 4 < 1, Lrecall that 2zp(R, f) is
the total variation of arg f on the fevel curves |f(z)] = R; then p(RA, f4) =
AP(R, f). We want to show that the function f*(z) is areally mean pA-valent.
Thus, we have to show that,

R
/ p(t, g)dr* < pAR?
0

for any positive R, or

R
/ (s, fAd(s™) < pAR™,
0

or, which is the same,
R
/ Ap(s, f)2s*-1ds < pAR®,
0

We write W(R)= 2 foRp(s, f)sds so that, since f € AMP, W(R) < pR?.
Then for 0 < A<1"

R R
/ p(s, N2s4-1ds = / s dw (s)
0 0
R
= R¥IW(R) + (2 — 20) / W (s)s%4-3 ds
. 0

R
< R¥-2W(R) £ (2 - 20) / pst-14s
0

: 2-24 )/}
22 _Pon
<DPR [l+~——-2/1 ] == RY,
Multiplying by 42, we obtain that
Rl
p(t, g)dt* < pARY

for any positive R, as we wanted to show.
After these preliminaries we state our theorem.

Theorem 1. Suppose that f(z) € AMP and that

f(€"%) = }in} f(re?®)y = a
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Jor any €' ¢ E, where cap(E)> 0. Then, if

liminf | ?Fien)] o 1 )
A— 0 n 4nlp

the function f(z) is constant.

The natural question to ask is how sharp is our theorem. Namely, for fixed p
is it true that for any positive ¢ there exists 2 nonconstant function f(z) e AMP
such that

f(e% = lim fre®) =a
Ire—
for every e ¢ E, where cap(E) > 0, and such that

[V(E,io,n)] 5L

—g?
4n2p &

liminf
N OO

1. PROOFs

Proof of Theorem 1. The case «a =0 is trivial, since then for f(z) € AMP the
value a = 0 will satisfy the hypothesfi/g of Theorem A. The case « = oo can be
treated in the same way by considering the function g(z) = 7(‘3 , which is in
the class Dg. The function g(z) satisfies the hypotheses of Theorem A for the
value a == 0. Therefore, we can assume that o #0, .

Suppose that there exists a function f(z) such that f(z) € AMP and

lim f(re') = a,
r—1

when e'? € E, where cap(E) > 0.

By a result in [8), if f(z) € AMP, thus f(z) € Ds, then fi (z) is normal.
Hence by a theorem in [7], if f(z) is normal, radial limits of J(2) are also
nontangential limits.

By the observation we made in the introduction, we can assume that f(2)
is areally mean p-valentin Q = {z:r < |z] < 1, largz| < n}, f(2) #£0,
and f(z) has the same nontangential limit o on E, where £ ¢ 8Q and
cap(E)> 0.

The function g(z) = f1/%(z) is areally mean £-valent. For fixed n, choose
ip as in the introduction. We have that

/[ o g dxdy < i

where Ap(aiy,n) = {z € Q : |g(z) - @ig,n| < p}, since Ap(aiy,n) C {z € Q:
18(2)] < p+ |atig, nl} = Qp(aiy, n) ; Observe that |y, ] = |afl/".

Let 7 be a small positive number to be determined later, which is going
to depend only on the function f(z). Considering t'/* = p in the above
inequalitites we obtain

JL o @taxays ([ jgapdsay
(1 1) A1y, n) D 1ynloug,n)

< ZEpetin 4 faftin2,

&' (2)P dxdy < Zip+ a2,

P(alo.n)

.
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Without loss of generality we can assume that the set E;, , is closed. Then
there exists a distribution u({) of total mass 1 on Ej, , such that the potential

u(z) = / log | ——| du()

Egn  12—8

is bounded by Vy(Ej,,») = y(Ei,,») for any z in the complex plane. Standard
computations [3, pp. 58-59] show that

(1.2) //|z1<1 [%%rrdrde < 5 (i, m)] < co.

Define

ou
Sy = / / () 2rdrdo.
" Ay (eig,n) I lar

By the Schwarz’s inequality, (1.1) and (1.2)
) 1/2
(1.3) Sp<m [”_—-—(?(5’:’"))] [2/" + |/,

Define now

— ’ ie __
on(() = / / oy @ dlarstre —Oar

for z = re'?. The Cauchy-Riemann equations for the function u(z) give us
that

O, 16 = —/ dlarg(re’® — )1d u(0).
] or Eiy.n
Therefore, we can write

Se= [ on®du(®.
g0
Our goal is to get an estimate of g,({) from below for any { € E;, .
By the above remarks it is enough to estimate ¢,({) at one point of Ej,,,
since the same estimate will hold at any other point of E;, ,. We can assume
that { =1 isin E;, », and hence we have to estimate

— ! i _
on(1) = / /A o F @ dlaretre” 11

For —% <t < % wedefine /; to be arectilinear segment of length cos? lying
in |zL< 1 and making an angle ¢ at { =1 with the radius drawn to { = 1.
Call = —arg(re’® — 1) ; then we have

on(l) = / / \&'(2)| didr.
A upn (g, )

We know that lim,_,; g(z) = a;,,» in any angular domain. Let w =@ N {z:
|z— %] < 4} be the angular domain resulting of the intersection of an angular
domain @ which has its vertex at { = 1 and is symmetrical to the radius of
|z] =1 through { =1 and is of aperture Z, with the disc {z: z — 3l < i}.
Then the part of @ in the vicinity of { =1 belongs to Ay (i, n).
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Let A denote the common part of A, (aj,,») and this angular domain w.
Observe that Aum(ai,n) = {2 € Q : |fY/"(z) —ajpn] < T} Cc {z € Q:
|f(z) — o] < 7} ; therefore, for T small enough depending only on the function
f(z), the connected component of A with the point { = 1 as boundary point
lies inside the circle |z — 2| = L. Hence,

a,,(1)=/f |g’(z)|didr+// |g'(2)|dFdr = T+1L
A A (@i )\A

Consider the range where di < 0 in II, and call the corresponding integral I11.
Then

on(1) = 1 — [III|.
By the definition of 7

di _ rcosf—r?
d0 ~ 1+4r2—~2rcos’

Fix r = cosfy so that the point z = re® lies outside the circle |z — =1
(ie., r = cos0) whenever 6y < |0| < n. We observe that di > 0 for |8| < 6,
and di <0 for 6y < |8 <= . It is not difficult to see that for 6y < |f] <= we

have |di| < rd@. Now

mis far [ (e,
Bo<|81<n

where the integral is restricted to the region A, (ai,,»)\A. So as we know that
for 89 < |0| < =, |di| < rd@, by Schwarz’s inequality,

mis far [ jg@nans far [ g
Go<|Bi<n 0o<|6|<n
<[ 18'(2)\r dr do
A i (o, n)

12
< {// |g’(z)[2rdrd0} {// rdrde}
Amlany,n) A i/ (exig, n)

1/2
<n [Bpetin o joimp]

12

Therefore,

on(1) 2 1 |II| > / /A 18'(2)| dEdr — x [z + faf!/7P] "

Now we pass to estimate I from below, namely,

I= //A]g’(z)]dt”dr.

If we set pe’* = 1 — re='®, a calculation shows that

didr = cost — p
(14 p2—-2pcosr)l/?

dpdt.
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Also, since (1+ p* —2pcost) <1 in |z - }| <1, we have that

nf4 ! — B
o,,(l)g/_”/“ dt/l |&'(2)|(cost — p) dﬁ’_n[%[zl/n_’_lap/n]z]l/z

na (14 p2 —2pcost)!/?
n/4 1/2
> [ at[ (g@leost—pdp-n [P+ fopirp] "
~n/4 LnA n
If we consider now /;/2 to be half of the segment /,, the half having the
point { =1 as one of its end points, then (cost — p) > %t on [/,/2NA] for
each 3% <1< %, and the other end point of /;/2 lieson |z — 3| = L. Thus,
n/4 12
o)z [ Plar [ (g@lds-n [Be +lapmp]
~n/4 2 LnA n
By our construction [/;/2 N A] contains a segment joining the point { = 1
with a boundary point of A..(ei,,»), since by our choice of 7 the connected
component of A with the point { = 1 as boundary point lies inside the circle

|z — 3| = } and one of the end points of //2 lies on |z — 3| = L. Therefore,

[ 1e@idp >
Lj2nA
for each —F <t < Z. Hence

V2 1/n Do 1n 1/ny2
an(l)Z—z—T —-n[;[‘t + |e] ]]

and the same estimate holds for each { € E; , , ; therefore,
] 1/2

1/2

(1.4) A
By (1.3) and (1.4)

P(¥(Eig,n))
n [ 2n

for any n > 0. Hence we must have

o [Pr,1n 1/ny2
n[n[t + |} "]

12 1/2
] [+ fal! 7] > 8y > Yool — P+ jainp]

(1.5) = [p(}’(zE’lzo,n))] [‘El/" + Iallln] > g‘tl/" - [glrl/n_*_ Iall/nlz] / ’

dividing both sides by [t}/" + |a|!/"], we have
, 12 1/

i [P(}’(Eto,n)) SvZ_ i [g]‘/z

2n = 2 [rin 4 ot/ n

squaring both sides, taking the liminf as » — oo, and dividing both sides by

n2p, we obtain
lim inf ?(Eig,n) > L
H—oo n = 4n2p’

’

which proves our theorem.

As' an immediate corollary to Theorem 1 we obtain an estimate in how big
the size of E can be for the function f(z) not to be necessarily a constant.
More precisely,
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Corollary 1. Suppose that f(z) € AMP and that
f(e%) = li‘n}f(re"”) =a
r—

Jor any €' € E. Then if cap(E) > 2e~1/4%'? | the function f(z) is constant.
Proof of Corollary 1. By Theorem 7.17 in [10, p. 437] we have

1082 + y(Eiy,n) +:(Ei°'") <log2 + y(E) =log [c——apz(E)] i
By hypothesis,
1 2
% % |
hence,

log2 + y(Ej,, n) 2 1
n < log cap(E) < 4n2p’
taking the liminf,_ ., in both sides of the above inequality, we obtain
y(EiO W1 ) < 1
n 4nip’
which implies by Theorem 1, that the function Sf(z) is constant, and the corol-
lary is proved.

liminf
Noes 00O

2. A CONSTRUCTION

In the introduction we mentioned that Riesz’s theorem does not hold in N de
full generality, In this section we are going to construct a function in AMP , o
nonconstant and such that it has the same nontangential limit in a set £ of
positive capacity.

Let f(z) be the function constructed in [2]; it satisfies that [f, [f'(z)? dxdy
<o and lim,_.; f(re’®) =0 for all ¢/ ¢ E c 9A ¢hap cap(E) > 0. S Al

If we denote by n(w) the number of roots of f(z) =w, S

JLr@rasay= [ [* nw)dow) <o,

where do(w) denotes the Lebesgue measure. It follows from the absolute con-
tinuity of the above integral that for almost all complex wy we have

(2.1) lim 1 //Il I n(w)do(w) — n(wyg) < co.

r—-17r 2
Choose wp, w; so that (2.1) holds for both values, and set
f(z) —wo
F(z) =2
&)= T2,
Then F(z) has angular limit o = wo/w, at all points of E. Also the equations
f(2) =0, oo only have finitely many roots, since n(wo) and n(w,) are finite.

We claim that f(z) € AMP. In fact, it follows from (2.1) thatif N(w) denotes
the number of roots of F(z) =w, then

(2.2) /0 2" /0 * Ny ar d$ = O(R?)
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as R—0 and

(2.3) /2"/ N(te'¢)tdtd¢ 0( 1 )

as R — oo. This implies

P

27t 2 )
/ N(te'®ytdtdg < C47,
2 0

—co < p < oo,where C isa posuve constant. We use (2.2) for p < 0 and (2.3) 3
for p > 0. Suppose now that R> 0, and choose g such that 29 < R < 29+!,

Then
2 2p+l 2p+l .
/ N(te'tyedtdp < Z / N(te')dtdy
<C 4 =2cqn < dcre.
> #=four <]
The function F(z) can have a finite numb;:r of poles and zeros in A, but by, - ‘ e )
a conformal mapping of a cut annulus Q onto the unit disc we can construct / (&, J [L it T
a function without poles and zeros;§f we call this new function F(z) again, © ‘ (,411,11/'“?
\is an areally mean (4$)-valent function, and F(z) has the same angular limit How 6N \ gk
"o = wo/w, in a set E of positive capacity as we wanted to show. L
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