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Abstract. In the paper "A counterexample concerning integrability of derivatives
of conformal mappings” (Journal D’Analyse Mathematique, vol. 53 (1989)), Baernstein
constructs Q a simply connected domain in the plane for which the conformal mapping
f:Q — A (unit disc) satisfies

[ ik =,
RN

for some p € (1,2), where R is the real line.

This gives a counterexample to a well known conjecture stating that all the above
integrals were finite for any 1 < p < 2.

In the above paper everything reduces to prove a certain basic estimate. Baernstein,
on the basis of numerical evidence provided by Donald Marshall, gives a proof of the
theorem which consists in checking the numerical computation using Calculus, and asks
for a conceptual proof of this basic estimate.

In this paper we present such a proof of Baernstein’s theorem. The main tool in our

proof is the method of the extremal metric.
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§1. Introduction.

Let us consider the following problem. Let  be a simply connected domain and

f: 2 — & (unit disc), be a conformal mapping. Assume L is a straight line which intersects

the domain 2, Hayman and Wu [4] showed that for any configuration as above,

| rene<e,
LNQ

where C is an universal constant. Later Garnett, Gehring and Jones [3] simplified Hayman
and Wu’s proof and gave an improved value for the constant C. Fernandez, Heinonen and
Martio in [2] give another proof of the same result with a better constant C' = 47?2, and
a conjecture is offered for the best constant. In the same paper they showed that there

exists a positive number p between 1 and 2, such that

| e <c,
LNQ

with C and p constants independent of the configuration. It is not difficult to see that the
line L may be taken to be the real axis R. The question is then for which exponents p is
it true that f'(2) € LP(RNQ), for any f and 2?7 Taking 2 to be A\ (—1,0] one sees that
f'(2) € L*(RN Q) can fail. Baernstein conjectured that f'(z) € LP(R N Q) would be true
forany 1 < p < 2.

Baernstein in [1] showed that this conjecture is not true. He constructed a simply
connected domain 2 such that if we consider the conformal mapping f from  onto the

unit disc, there exists a positive value p between 1 and 2, such that,

|Gl = oo.
RNQ

We pass to describe summarily the work done by Baernstein in [1]. His domain Q is

the complement of an infite tree T' clustering to the real line, as in the picture below.

figure (1.1)
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The fixed aperture at every branching of the tree T is §. Using Green functions, and
the theory of conformal and quasiconformal mappings in a beautiful manner, Baernstein
reduces everything to prove the following result. We need some preliminaries. Let us
consider the domain © = C'\ (—o0,1] U (0, ™3], where (0,¢'™/3] is the segment joining
in/3

these two points. We are going to call a = €'™°, and consider the conformal mappings

Fy(z), + = 1,2; mapping O onto the domain H = C \ (—00,0], such that Fi(1) = 0,
F(a) =0 and |Fi(2)| ~ |2| as z = 00,1 =1, 2.
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If we consider,
I S 1C)) _ o Fa(2)
y=lim|——7 |, A= lim|———

then Baernstein’s theorem states that.

Theorem.

71/2 +ﬂ1/2 > \/5

In his paper Baernstein proves this result after numerical evidence given to him by
Donald Marshall, who computed the values of v and § using Trefethen’s program (7],
[5,p.422] for finding parameters for Schwarz- Christoffel transformations. He starts with
the 4-place decimal approximation to the parameters given by the computer and confirm
by Calculus the validity of the theorem, and asks for a conceptual proof of his theorem.

In this paper we present such a conceptual proof. In it our main tool is the method of
the extremal metric. The idea of how to obtain lower bounds for v and 8 using extremal
metric was inspired to us by the paper of Jenkins and Oikawa [6], in which they obtain a
sharp version of Ahlfors’ distortion theorem, and then they use it to give simpler proofs of
some well known results of Hayman.

Acknowledgments. I would like to thank Professor Albert Baernstein II for his

helpful comments and suggestions concerning this work.

S2. Proof of the Theorem.
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A. Estimating v = |F{(1)|.

Let p be a small positive number and consider the discs Df,l) = {z:|z — 1] < p}, and

D = {z:|z = 1| < %} Let G)E,l) be the doubly connected domain

1/p

figure (2.2)
By the normalization properties of the function Fj(z), it is not difficult to show that

for any positive €, there exists a small p(€) positive such that,

1
p(e)

1
p(e)

{z:]2] < == (1=} C F(DY) ) € {z:lel < == (1 + )}

and

{z:]2] < [F{(D(p(e) — )} € F(D)) € {2:]2] < I1F{(D)I(p(e) + €)}.

Thus, if we consider in @E)l(l) the module problem for the family of curves joining an)tl)
with D)

1/p(6) using the conformal invariance of the module and the comparison property



for the modules, we have that

2
modga (T) < -

) (1-9 :
© In( oeoTarEmn)

This provides with a lower bound for the module, our goal is to obtain an upper bound

for the same module. For this we consider the conformal mapping, ®(z) = In(z — 1), then
.o 1)
B(2):0,0) — Sy
where 522) is a quadrangle.

I is the family of curves in 51(72) joining the pair of sides opposite to the vertical sides.

By the conformal invariance of the module we have the following equality
mode(l())(l‘) - mods(t))(f’),
where T is tha family of curves in 51()2) joining the pair of vertical sides. By a well known
property of the modules of the families I and T, we have that
1

mod 1) (
p(€)

mod s) (T) =
ple)

Thus, to obtain a lower bound for mod (T') , we need an upper bound of mod j1) (D).
) p(e)

The idea of how to obtain the right upper bound of mod ;) (T') was suggested by [7].
p(e)

(1)
ol

For any value of z in the interval Inp(e) < z < —Inp(e), let o(z) denote the maximal
open subinterval of Re{z} = z in S,()%Z) such that the two components of 51()2) \ o(z) have
the two vertical sides as boundary components. Let 6(z) denote the length of o(z) and
61(z) the length of the part of the segment o(z) below the x-axis., 62(z) the length of
the part above the x-axis. As it can be easily seen, 6;(z) = 7 for any z in the interval
In p(e) < z < —In p(e); for O,(z) we have

T, iflnp(e) <z < ln(-‘éi);
02(z) = { By(z), fIn(L)<z<0;
T, if 0 <z < —1Inp(e).

Let the interval (111(32@),0) be divided into n consecutive closed subintervals A;, 7 =

1,...,n, of equal length, and for each j =1,...,n, let
6{")(2) = min 6,(t)
2.3 tEA; ’
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and define 958)(17) = 922)(1') if z € Aj; 7 =1,...,n. It is clear that such minimum is
attained. At the end point T of an interval A; the step function Ggs)(w) has a negative
jump, then we draw the ray given by & — A, 9;3(:5) + X A>0;7=1...,n. The lower
envelope of these rays and the locus y = Ggs)(w) defines on the interval (1n(32§),0) a
continuous function Ogt)(:z), which determines a decomposition of the interval into a finite
number of subintervals on which the locus y = th)(x) has slope —1 or 0. We define 9;(;)(:1:)
in the interval (In p(€), —In p(€)) by

(r, iflnp(e) <z < ln(lzé) + Ay —27 + 952;
65) — (z = In(*8) — Ay), H1n(L)+ A1 — 27 +65) <z <In(3L) + Ay
6 (@) = § 60(a), if Ay +1In(¥) <z <0
Zr 4 A2, if0<z< /&
T, if /35 <& < —1Inp(e).

The domain determined by

—bi(z)<y< th)(w), Inp(e) < z < —Inp(e),

becomes a quadrangle QEJI()G) (figure (2.4)) on assigning as a pair of opposite sides the

segments

—6:(In p(e)) < y < 657 (1n p(e))

and,
~81(—np(e)) <y < 657 (— In p(e)).

For the module in Qg)l(l) of the family of curves joining the pair of sides complementary

to the two vertical sides, we have that
sy () = oy, ()
Thus it is enough to obtain an upper bound for monE}(Z (f‘) It is known that an upper
bound for this module is given by the Dirichlet integral of a piecewise continuously dif-
ferentiable function in le()e) taking the value 0 on the side given by y = —6;(z), and the
value 1 on the side given by y = Hgt)(:r:). Such a function is given by

y +6i(e)
u(z,y) = ()




where 6(9(z) = 8;(z) + 9%0(:1:). To estimate the Dirichlet integral of u(z,y) we subdivide
the domain Q;l()e) into five pieces each corresponding to one of the following intervals in the
x-axis; I = (In p(e), ln(32@)+A1 —27r+9§?2),); II = (ln(ﬁé) —2r+ A +9£‘2, ln(32§)+A1);

IIT = (In(*2) + Ay, 0 IV = (0, /&) and V = (v/Z&, —lnp(e)).
On the two pieces of the Dirichlet integral corresponding to the intervals I and V

u(z,y) = y%, and since when we take the limit as the number of subdivisions n — oo

then A; — 0 and 9(3) 5", therefore

) 1 1 1, V3, =, 1 1 1 [«
//I +/V|Vu(:c,y)| dmdy=2—ﬂln(—p-(—5)+§[ln(7)—g]—I—gln @)—-2—7; TN

It is not difficult to see that the Dirichlet integral corresponding to I after we let n — oo
tends to

In(%2) 82 (z-In(*E))

y+mw

J{n(%i)w/ﬁ /—w |V(”" ~(z —1n(*2))

)2de dy =

In(3) 82— (z-In(3g))

- 1 (y +m)° p
/m@éi)—w/e /—w {(”’r — (2 — In(32)))? " (% — (e - ln(ﬁ)))“]

6

mCE) 1

- /1n(*§3)—7r/6 5[(1‘%“"' ~ (2~ ()

4 117 V3. 1 (E)
- 3 [‘“h’l( 6 —( _ln( 2 )))]ln(ﬁé)—r/(i

]dm

4 12
= —In —.

3 11

As for the piece corresponding to IV, we have that after some calculations

y+m
\Y dz d
//;Vl (57r_+_>\ 2)| T ay

3 1 4 [57 1 4 Ir
= [ 57r:/—X -3 —é—\/X] arctan(g) + 5\/;\/X

The estimate corresponding to III is more delicate, and we will treat it carefully.
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0 de 1 [ 8(2)?-6"(2)8(z) + 6 (2)?
Vu(z,y 2d:cdy:/ +—/ dz
//111 V(= v)l In(Z) 6M(z) 3 In(*2) 69 (z)

-/, <£>9<f><x> Z/ gy e = (i) + ()

We proceed to estimate these two integrals.

. 0 dz V3
(Z)"/ln(@) 60(z) = 5r ln(_)

We estimate (z¢) as follows,

J=1 7 Jj=1
=1 (5) v 1. 11
:j=1-§[1n(7r+9]~ —:C)]OJ — glni-d,

as n — 0o, where V; is the total variation of the function Gg )(m) in the interval Aj,
n. This completes our estimates. Putting all of them together we obtain that

i=1,...,

1.1 V3,3

mod 5’1())(F)_27r (p (6)) [n(_) _——\/—‘ —ln_ 1n(2 5
+| 3——1——\/,——5 57r\/—]arctan( )+ = \/7\/_+%+§ln%

Let us call G(\) the expression on the right hand side of the above inequality involving A

GO = [ 3\}_ : 577\/_]arctan( )+ = \/7\/— 2%\/—\/_

and solve the equation G(\) = 0.

[gﬁ_ %\/%armn(é)]ﬁ= [2%\/%— \/garctan(%)] \/LX

thus,




L /T _ [ 3 arctan(l)
A= 5 V5~ Ve 5~ 0.10050259.
$VE — 31/ 5 arctan(3)

Choosing A to be this value the expression on the right hand side of the inequality

involving A is equal to zero, therefore;

V3. w 1 11 4. 12 3. /3
d I‘<—-—l )= D Hge tghs g — (S
mo 53&() ( 2()) ((2) 6t 200 T3 jin TR e
Thus,
27
1( (1—¢) )
AP OFOFID]
N 1
T in(ag) + AMCE) - D+ g+t + i - (g

taking inverses and exponentiating both sides, we obtain
2( )Mn(ﬁ) Pren(etiin B+l H-t ) >
p? (e 2

1—¢€
Z 00 + Op@OIEL (D]

Letting € — 0 we get that,

v =|F(1)] >
> 1
- 6{(1n(%§)—%)+2n(;gg+lln LyspL2 m(@m

Hence,

72 = |F{(D)]"? > a'/? > 0.79249.




B. Estimating g = |[F,(a)].

Let p be a small positive number, and consider the discs DE,Z) = {z:|z — a| < p}, and

D® = {z:]z —a| < %} Let @,(02) be the doubly connected domain

1/p
oY = {[e n D)1 \ DP}.

Let H,(,2) be the image under Fy(z) of 65,2).
By the same reason than in the first estimate A, for any positive €, there exists a

small p(e) positive such that;

{z:|2] < |F3(a)l(p(e) — )} € B(DE)) € {2:]2] < |1F3(@)l(p(e) + )}

and,

1
p(e)

Considering the analogous problem in ©

1

(1=} € Fa(D))) € {2 < p(e)

{z:]|2] < (1+€)}.

(2)

we have that:
p(e)’ ?

2

o " In( (1—¢)

mod@(g) < .
p(e)(p(e)+e)IF£(a)I)

We want to obtain an upper bound for the module above. For this we consider the

conformal mapping ¥(z) = In(z — a),

a@ @)
U(2):0 (0 = Sy

where S’(jg) is again a quadrangle.
Where I is the family of curves in 55)2) joining the pair of sides opposite to the vertical

sides of 51()2). By the conformal invariance of the module we have that,
modg ) () =modye) (T),
ple) p(e)

where T is the family of curves in Sg‘()z) joining the pair of vertical sides. By a well known

property of the modules,

- 1
mod = ———.
ng( ) 7n0dS@)(F)
p(e€)




Thus, to obtain a lower bound for mod ) (f), we need an upper bound for the module
ple)

mod .(2) (T"). To obtain our bound on the left hand side of .5'5)2), ie. {z:z € S’(jg); Re{z} <
p(e)

0}, we proceed as in case A. Our function 6;(x) in this case is given by,
() i if In p(e) < < 0;
S P arctan(y/ z2—3), if 0 <z < —Inp(e).

We modify the function 6;(z) in the same way we did with 6,(z) in case A for values

of In p(e) < 0 £ 0, and to the right of 2 = 0 we are going to modify 6;(z) as follows;

B(t)(:z:) _ T4z, 0z <A
1 61(z), if A<z < —lInp(e).

Where 6 > 0 is a free parameter and ) is implicitely defined by the equation

_3

OA + arctan( 17 3
e —

2T
)— 3'

The domain determined by

—6(z) <y < 8x(2); Inp(e) <z < —lnp(e),

becomes a quadrangle Qg?e) on assigning as a pair of opposite sides the segments

—6{"(In p(e)) < y < 6a(In p(e))

and

—6(=In p(e)) < y < 82(—In p(e)).
As in the case A we have that;

modsﬁg) (') < moni;E)e) ().

Thus, it is enough to obtain an upper bound for the module mon(z) (f‘) This upper
p(€)
bound is given by the Dirichlet integral of the function

92($)-—
u(z,y) = W,

where §(9(z) = Hgt)(:c) + 6,(z). Hence,

10




[, Wt wPds dy =
Qﬂ(e)

= + |Vu(z,y)|?de dy = I + I1.
(2) (2)
Qp(e)ﬂ{Re{z}SO} Qp(e)ﬁ{Re{z}>0}

The estimate of the integral I is the same as in case A because if we look at the left hand

sides of the domains QE}( and Q(( ) they are the same up to a vertical translation. Thus,

1

I<
2 In( (e)) +3 ln + 200 + o [ln(ﬁ) - _] éln% - %ln(%i)

We pass to estimate the second integral I1.

Il = // |Vu(z,y)|*de dy
QL% n{Re{z}>0}

_ /““"(” dz_ 1 /““’“ 67 (2)? — 617" (2)6(2) + B3(2)? |
o 60(z) 3 Jo 6 () ©

where,

62(z) = m + arctan( 1e77 ),

for,0 <z < —Inp(e), and

6 (z) = G(It)(x) + 62(z) = 2,

for values of x such that A <z < —In p(e). Thus II is equal to;

- / L eyl /A 0" (2)* = 607 (@)8 (2) + b3(2)?
0 0

50 ()t 3 60 (z)

1 1 A1 el
—In— — 2= 4 — 6())* dz.
+27r " ple) 2=m + 67 Jy 3(6z(2))" dz

Let us compute the last integral in the above equality,

—1In p(e) —1In p(e) de 1 4—3 (6)
6/ 2d — / _— _1 P
/A (By(z))"dz =3 | e —3 3T )

It remains to estimate:

11



Ydz 1 / 01 (2)? — 61" (2)6(a) + 5(2)?
o 00(z) " 3 s 60 ()

Mt S+ st s
:/ d
0

4 | §z + arctan(y/ 752—3)

4e2 -3

T

A 1+ 282 + 21 6
_ / 3 4e2s 3 dz — = [In(6z + - + arctan( 4e2¢ _ ))]
0 431"- + 6z + arctan( 4623_3) ] ’

The second term in the formula above is equal to gln %. Thus, to complete our estimate,

our final goal is to find a suitable bound for the following integral.

26° 1
/A 1+ %5+ s P,
T=oo
A
0 3 + b6z + arctan( m)
where A + arctan(y/ ;53— ) = %, our first observation is that;
4 3
-—gﬂ + 6z + arctan( m) > 27 — arctan( 462—1_—5),
for 0 < z < A, therefore it is enough to estimate the integral
1
[,
0 27 — arctan( 4622_3) 27
oo —#I— + arctan(y/ 5o—3)
g/ )
0 27(27 — arctan(y/ o=3))
In the above integral we have dropped the term 2—33 in the numerator, since § can be
made as small as we please. Using the change of variable u = arctan( 48.” 15— ), the above

integral becomes;

/0 ZE(tanu)? +u du

x 27(2r —u) tanu

1 T 21 tanu 1 3 U
o I ant e — [P % otu du=1+2.
27r/0 3(27r—u)u+27r/0 (@r —u) Ot =1t
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Standard numerical integration methods give us the following estimates from above for the

two integrals 1 and 2.

1
1< £(0.126) = 0.042,

and,

1
2 < —(0.158) < 0.0252.
- 27r( ) S

Putting all these estimates together we get that; after letting 6 — 0, and A — oo.

.1 1 1,11 1 1. 3
2 < —1 —In—+ — + —|ln(—
modge (1) < 5oy ¥ 3070 T 200 T 2n (5 -5
12 4 — 3p?
+§ln————1 (i) (—+(6))+0.042+0.0252.
Thus, taking inverses and exponentiating as we did in case A, we obtain that, after we let
e — 0:
Fi(a)] 2 1
= a
2 = 2r{in Haski4 () —F)+in 12 £ 1n(32)+0.0672} _ 7.
Hence,

A% = |Fj(a)]*? = n'/* > 0.6403.

Therefore putting together the two estimates, we have that;

IFl(a)]Y/? + |FI(1)]Y/? = Y2 + 412 > 0.79249 + 0.6403 > /2,

as we wanted to show.
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