INTERPOLATION IN THE UNIT BALL OF C"

Bao Qin Li * Enrique Villamor

Abstract: A necessary and sufficient condition is given for a discrete multiplicity
variety in the unit ball B,, of C™ to be an interpolating variety for weighted

spaces of holomorphic functions in B,,.

1. Introduction. In this paper, we shall consider when a discrete multiplicity
variety in the unit ball B, of C™ is an interpolating variety for holomorphic
functions in B,, with growth conditions.

Let f be a holomorphic function in B,, and {(;} a discrete set in B,, . Then

we have the following Taylor expansion about each (x:

f(z) =Y fealz—C)
|I|=0
where (and through-ut the paper) fi 1 := %aljg;(ICk) I:= (i1. - .ip) € (ZT)"

is a multi-index, ZT = {0,1,2---}, and |I| =iy + 2 + -+ + 1.

Let {m;} be a sequence of positive integers. We consider the following
interpolation problem with multiplicities in the unit ball: under what (neces-
sary and sufficient) conditions is it true that for any multi-indexed sequence
{ar.1tkeN.0<|I]<m, Oof complex numbers satisfying a certain growth condition

(defined in §2) there exists a holomorphic function f in A=>(B,,) such that

fer=ang, for keN.0<|I| <my, (1.1)
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where I := (i1, .i,) € (ZT)" is a multi-index, and A=>(B,,) is the sapce of

holomorphic functions in B, satisfing that
(1—12)*f(2)| < B.z € By,

for some constants A, B > 0. We will then say that V := {((x,ms)} is an
interpolating (multiplicity) variety for A~>°(B,,). Note that the condition (1.1)
means that f has a prescribed finite collection of Taylor coefficients at each
(. In the special case that my = 1 for all &, (1.1) simply means that f takes
prescribed values at each (.

The similar interpolation problem for weighted spaces of entire functions in
C™ has been studied extensively due to its applications to other subjects such
as harmonic analysis (see [BG], [BKS]. [BL1], [BL2]. [BT}, [BV]. [LT], [LV], [S].
etc.). Given a discrete set V = {({;} in C", a necessary and sufficient interpo-
lation condition in terms of the “directional derivatives” of defining functions
was found in [BL1] for V' to be an interpolating variety for the space A,(C"),
the algebra of entire functions in C" satisfying that |f(z)] < Aexp(DBp(z))
for some A, B > 0 in the sense of Berenstein and Taylor ([BT]), where p is a
plurisubharmonic weight function in C™. It was showed in [M] that this condi-
tion can be carried over to B, for a discrete set {{}} in B,, to be interpolating
for A=>(B,,). In this paper. we consider when an arbitrary given multiplic-
ity variety V' = {((x.my)} in the unit ball B,, is an interpolating variety for
A~>(B,). It seems hard to give an analytic interpolation condition in terms
of “directional derivatives ” of defining functions simiar to the one in [BL1] or
[M]. The conditions obtained here are given using the distribution of points of

V in the “tube”

S(Fie.C)=1{z€B, : [F(2)] = (Y _If(2))F <e(1 -]z}, (1.2)
7=1



where F' = (f1.---. fm) is a defining vector function. It turns out that a mul-
tiplicity variety V = {(Cgx.my)} in By, is an interpolating variety for A™>(B,,)
if and only if there exist constants €. C' > 0, and m(> n) holomorphic functions
fi.- . fm in A7>(B,,) such that these functions vanish at each Cr with multi-
plicity > my. and each component of the “tube” S(F:e.C) defined as in (1.2),
where F' = (f1.---. fmn), contains at most one point (; and the diameter of such
a component is at most A\(1 — |(x])¢ for some suitable constant 0 < A < 1(see
Theorem 2.7).

We refer the reader to [BV] for similar interpolation problems with multi-

plicities in weighted spaces of entire functions in C".

62. Prelimilaries and Results. First of all, let us fix some notations, which
will be used throughout the paper.
Definition 2.1. Let H(B,,) be the ring of all holomorphic functions in B,,.
Then
A™(B,)={f € H(B,): sup M < 00}

©

-eB, log =3

Note that it is not the specific growth conditions on the functions f €
A~>(B,,) which are important, but rather their consequences for the ring
A~>=(B,,). The growth condition imposed on the holomorphic functions im-
plies that A=>°(B,,) D H>(B,,), the space of bounded holomorphic functions
in B,,. and that A=>(B,,) is closed under differentiation. The main theorem in

the paper still holds if the space A=>(B,,) is replaced by the space

Ap(By) = {f e H(B,,) : [f(2)| £ AeBrla=r)

for some A, B > 0}. where p is a proper increasing function so that the calcula-

tion in the proof of the paper can be carried out similarily. The space A~>(B,,)



can be thought as the union of the weighted spaces

A™*:={f e H(B,): sup (1 -
z€B,

A)*1f(2)] < so}oar > 0

and the union of the weighted Bergman spaces

Bop:=1{f€A™™(B,): / (1—|2)*|f(2)Pdm(z) < o}, a > —1.6> 0.

It carries the natual topology as an inductive limit of Banach spaces.

Let f # 0 be a holomorphic function on an open connected neighborhood
of ¢ € B,,. Then a series f(z) = E;C:y P;(z — () converges uniformly on some
neighborhood of ¢ and represents f on this neighborhood. Here P; is a homoge-
neous polynomial of degree j and P, Z 0. The nonnegative integer v, uniquely
determined by f and (, is called the zero multiplicity, or zero divisor of f at (.
denoted by div ().

Let V = {((x.my)} be a multiplicity variety in B,,: that is, a discrete set

{¢x} C B, with |(x] = 1 together with a sequence {my} of positive integers.

Associated to V, there is a unique closed ideal in H(B,,),
J=JV):={f € H(B,): dive((x) > my.Yk}.

Two holomorphic functions ¢, h in H{B,,) can be identified modulo J if and only

oMlg(¢e) _ OMIn(Gh)
ozl 0

L0 < || <my k€N,

here and throughout the paper, we use I to denote a muti-index; that is, I =
(i1,---,in) € (ZT)™. The quotient space H(B,,)/J can be identified to the
space H(V') of all sequences {ax. 1 }ren.0<|I|<m, Of complex numbers. which can

be described as “analytic functions ” on V. The map

M £(¢,.
p:plf)= {_I!g(ZCTk)}kENAOS|1|<mk




is the natural restriction map from H(B,,) into H(V).

Now we are going to define the space {7°°(V') of “analytic functions” with
growth conditions on a multilicity variety V. This will be the range of A=>(B,,)
under the restriction map p in interpolation.

Definition 2.2. Let V = {({x.my)} be a multiplicity variety in B,,. Then

my—1
=V i= {{an.1 b reno<irj<ms * Sup (1 — [Ge])™ Z |ag.1| < o
REN 11]=0
for some A > 0}, where af ; := (M1 — |¢x]))¥lag, 1 is the “correction” of ay

and 0 < A < % is a constant, which is fixed throughout the paper.
Proposition 2.3. p(A~>(B,)) C {7>(V).
Proof. Let f € A=>°(B,,). Then there exist A, B > 0 such that |f(z)| <

—A __ Since A < 1, there exists a « such that 0 < An < o < 1 and so that
|=]) n

(1—
% < % Thus. there exists a € > (0 such that
A 1 ‘
— < . (2.1)
« n+e
Consider
g(z) = f(Ck + o1 = |C])2), 2 € By,
Then we see that
A A
g(z)| < = . 2.2
S o ey Ton} ) R R Ty 0 R

Note that g is holomorphic in B,, and continuous up to the boundary S of B,,.

By the Cauchy formula in the uniut ball (see e.g. [R]) we have

9(z) = /S ( gw) do(w),

11— <w.z>)"

where o is the normalized rotation-invariant positive Borel measure on S and

< w.z > is the usual inner product. Thus for I = (i1,42,---,4,), we have that

oMg(z)
o1z

(3 2
QU]_ et /['U’IL"

= (=) +1)--- (n+ |I| ——1)/ do(w),

s (1= < z,w >)ntHi




where w = (wy,- -, w,), from which we obtain that
IO“ '9(0)\
01z
< e+ 1)+ (041 = 1) [ latw)ldo(w)
S

< An(n+1)---(n+ 1] —1)
- (1-a)Pa-G)”

in view of (2.2) and the fact that [ do(w) = 1. But

ollg(0)

2 'm) _
| =122

— 1¢k1))

We obtain that

- oM ()
)M
P T

nnn+ 1)y (n+ 1] —1)
BZ i

<
- — — |
(1 Oﬁ) 1 ICk = I!
A 1 nn+1) - (n+ 1] — 1)
< |I|
=P TGP 1;0 e n

in view of (2.1). We assert that the series

0

To see this, consider the holomorphic function

1

S Ry P O

in the polydisc P := {2 = (21. 20"+, 2,) : |[21] < £+, |za] < L}, The function
h(z) can be expanded to the Taylor series in the polydisc P as follows:

o0

Z (=) ln(n+1) - (n+ 1] - l)zl.

fz) = I

|I}=0




1 . e s —_— 1
n+e’ i n4e

Noting that zp := (— ) € P, we obtain that

o0

: el Il -1
|§|: (nie)llln(nﬂ) 1r(!nH D h(z0) < o0.
I|=0
Thus., we have that
- O () A
— |} , ~

|I]=0
for some A, B > 0. Hence p(f) € [°°(V'). The proof is complete. [J

Remark 2.4. In the above proposition we showed that for any f €

A™>*(B,.),
A= 1 O (Gr)
Egg(l—mﬂ) I%{)(A(l—lékl)) |Wz_| <00

for some A > 0. This is a “precise” result for the unit ball B,, in the sense that
the “correction factor™ (A(1— |zk|))|1 | in the above sum can not be dropped and
0 < A < 1 is best possible, and thus the above sequence space [=>°(V') can not

be replaced by the “natural-looking” space

mip—1

A(V) = {{an.1 ven o< rj<ms ¢ sup (1 —|C)? Z lag.r| < oo
k€N |I|:0

for some A > 0}. In fact, there exist a V and a f such that p(f) ¢ A(V) through
p(f) € 17°°(V). This can be seen from the following

Proposition 2.5. There exists o f € A™>(B,,) such that for any A > 0,

> ol f(c,
sup(1— A S 121,

hEN Vet otz
=1 oM f(Cr)
> :21131( |Cl) |I§|:0(”( [ =5, 1=
However, for any 0 < A < % and A > 1,
= ol (¢)
. 1 — . A 1 — . ] *I” (
sup(1 = |G ) > A0 = a5 < o0

|I]=0




Proof. For the sake of convenience, we look at the case n = 1. Consider the
function f(z) = i, which is holomorpphic in the unit disk. Let V = {(4} =

{1—1+}.k=1.2,---. Then Iﬁ;ﬁ(—")l = E7*1. Thus for any A > 0,

o 1 () .
sup(1 — |Ck|) AZ ~ (1 —|Ckl)) ‘T—J(,C—QI
§=0 '

kEN
= sup(l)Aic(l)Jh"‘*1 o0,
ken kT =k
However, for each 0 < A <1 and A > 1, we have that

> )
sup 1—|Ck|AZ (1 —[Ck]) L](—Ck)l

We have seen that p(A~>(B,)) C [7>°(V), but in general, the space
17>°(V) is too large. The interpolation problem with multiplicity stated in the
introduction is to determine when p is surjective from A~>(B,) to [7>(V).
That is, under what conditions, is it true that for any multi-indexed sequence
{ag.r} € 17°°(V) there exists a holomorphic function in A7>(B,,) such that
frer = apg for any & € N and 0 < |I| < my: ie. f has a described fi-
nite collection of Taylor coefficients. When mj; = 1 for all k, then f;; =
ay 7 simply means that f((;) = a,. where {a;} is a sequence satisfying that
suppen(l = |Ck])*ax|} < oo for some constant A > 0

Definition 2.6. A multiplicity variety V' = {({x, ms)} is an interpolating
variety for A=>(B,,) if the restriction map p is surjective from A~(B,,) to

[=>(V).




Let V = {((x,my)} be a multiplicity variety. We use V' C F~1(0), where
F = (f1.f2. -+ [m), to denote that each F; vanishes at (5 with multiplicity at
least my; i.e., divy(Cx) > my . Vk. Given e,C' > 0. we define S(F: e, C) by (1.2),
which can be thought as a “tube” of the variety V.

We shall prove the following theorem:

Theorem 2.7. Let V = {((r.my)} be a multiplicity variety i By, and
m > n a positive integer. Then V is an interpolating variety for A=(B,) if
and only if there exist m functions fy, fa. -+ . fm m AT(B,,) and two constants
e,C > 0 such that V.C F~Y0), where F = (f1, fa, . fm) , and each connected
component of S(F:e,C) = {z € B,, : |F(2)| < e(1—12])°} contains at most one

point in' V and the component containg zy is of dimater at most A\(1 — |z|).

§3. Some Lemmas. In the following, we shall use A, I3, C, € to denote positive
constants, the actual values of which may vary from one occurrence to the next.
The number A is the fixed constant given in Definition 2.2.

To prove the results, we need the following lemmas.

Lemma 3.1. Let V = {((r.my)} be an interpolating variety for A=>(B,,).

Then given M > 0 there exist two constants [ > 0 and € > 0 such that

Apa(V) D {a = {ar.1}reN.|1j<m, * |lal] <€},

where
my—1
llal| = sup(1 =[G D Jak 1}
LEN 7120
af = (M1 = |G)) k..
Ap (V) = {ay = {fr.1tren.|i|<my o f € Api(Bn),|lag]| < 1},
and

Au(B,) ={f € A™=(B,): (1 - |2])|f(z)| <.z € B,}.



Proof. Let

A= {(L = {ak.l}kEN.|I|<m,k : H(LH < 1}

Then it is easy to check that A is complete under the metric induced by the
norm ||a||. Because V' is an interpolating variety for A=>(B,,), for any sequence
a = {ag;} € A, there exists a f € A, (B,) for some [ such that fi ;= a1 for
k e N and |I| < my. That is, a € A, (V). This shows that A = U2, A, (V).
One can check that each A, (V) is a closed subset of A. In fact, if {f;}
is a sequence in A, ,;(B,) such that (f;)i,; — a € A as j — oo, then by the
definition of A=>°(B,,), {f;} is uniformly bounded on each closed subset of B,,.
Using Montel’s theorem (see e.g. [G]) we know that {f;} is a normal family in
B,.. By passing to a subsequence, we can assuine that f; — f normally, where f
is the limit function. By the Weierstrass theorem and the uniqueness of the limit
(see e.g. [G]), we deduce that f € A, ,;(By) and {fi r} = a. It follows that a €
A, (V) and thus that Ay, (V') is closed. Now by the well-known Baire-category
theorem, we know that for some [, A, ;(V') has a non-empty interior. Therefore,

there exists a € > 0 such that A, (V) D {a = {aw.1}ren|1j<m, : |lal] <€} O

Lemma 3.2. Let V = {(Cx,mg)} be an interpolating variety for Ap(B,,)
and M > 0. Then there exist two constants | > 0 and € > 0 such that the
following two conclusions hold:

(1) There exisits a sequence { fr.} of holomorphic functions in B, such that
(1—|zDYfu(2) <1, 2€B, and keN (3.1)

and (fr);.1 =0 for all j and |I| <mj — 1 except that

oGy e
(Tnk - 1)02{”“1 (/\(1 — |Ck'))mk_1v

10



(i) There exists a sequence {gi} of holomorphic functions in By, such that

each gy satisfies (3.1) and (gi)ir = 0. Vi,|I| <m; —1 except that

gr(Cr) = e (3.3)

Proof. It follows from Lemma 3.1 that there exist two constants ! > 0 and € > 0
such that the space A4, ;(V) contains the space S := {a = {ap1}reN |1j<m; :
lla]] < €} (see Lemma 3.1 for the notations). For each fixed k. consider the
sequence ay = {ax.1}reN,|1j<m, satisfying that a;; = 0 for all j and 0 < |I] <

m; except that
€
k.1, = v .
K ()\(1__|Ck|))mk—1

where I}, = (my, —1,0,---,0) € (Z*)™. Then it is clear that a; € S. Hence there
exist holomorphic functions f, in B,, such that (3.1) holds and that (fi),; 7 = a;1

for all j and 0 < |I| < m;. Thus (3.2) holds. The conclusion (ii) follows from

the smae argument. [

Lemma 3.3 (Schwarz, [G]). If f is holomorphic in an open neighborhood
of a closed ball B(C.7) in C™ centered at ¢ and with radius r, |f(z)] < M
for z € B((,r), and %i(o = 0 whenever |I| < m for some m € N, then
F(2)] < M=z = (™ for 2 € B(C.r) -

Lemma 3.4. Let V = {({y, mg)} be an interpolating variety for A=>(B,,).
Then

(i) X > (1l — |Ck\)c for some €,C > 0, where X s the fized constant in
Definition 2.2;

(1) > ey (1= |G < o0 for large M > 0.

Proof. By Lemma 3.2 (i) there exists a sequence of funcctions {f} satisfying

11



(3.1) and (3.2). By the Cauchy Theorem,

1 0™ (G (L n / fu(2)dzi Ndzg - ANz,
(mp— 1) gzt 2w (21— Cip)™ (22 — Cak) - (20— Cute)

where ¢ = ((1x. G2k -+ Cuk). and the integral is taken over the boundary of
the polydisc
Pi= {2z — Cual < AF(L =[G zn — Gukl < AZ(1— ]G 7}
C{zt]z =Gl < ()21 =GN}
Note that for z € P,

S e N T TATY:

for some A, B > 0 since

[S1T5Y

L= 2] > 1= (]2 = el +1C[) = (1 = (nA)2 )(1 — [Ckl)-

We have, in view of (3.2), that

€
(AL = [G]))me—t
A 1

<
T (1= GNP (AF(1 = |C))me

and so that A" > e(1 — |¢x|)€ for some €, C > 0. That is, (i) holds.

For each k, there exists a j such that dy, = |, —(;|. where dj, := inf ;2 {|{; —
Cx|}. Let gi be the functions in Lemma 3.2 satisfying (3.1) and (3.3). Set hy(z) =
gr(2) — gr(Cr). Then hi(¢r) = 0. When z € U := {2z : |z = (| < M1 —|C|)} we

have that
[ A
hi(2) L ——— + €< ———5
(1—1z[)! (L —|Ck])P
and thus that, using Lemma 3.3,
Alz — Gl
hp(2)] < )
R T



Hence. if (; € U we will have that

=l = Iul6)] <

and so that |¢; — (x| > €(1—|(x])© for some e.C' > 0. If (; ¢ U, then |(; — (| 2
—|Ck|). Therefore, in any case we always have that d > e(1—|¢ 1|)€ for some

0 <e<1andC >0. Let By be the ball centered at (; with radius dj. Then

BN B, = () for i # j and the volume |By| of By, satisfies that |By| > e(1— [T

for some e, C' > 0. Thus. we deduce that

1 - |Ck = e—— (1 - ICkI)Md'nL
,; gl | Bi| JB,
<Ay [ (- (ahCm
k=1" B
<A / (1—|z)M=Cdm
17 B

for large M. This completes the proof. [

84. Proof of Theorem 2.7. We first prove the necessity. Given a M > 0, by
Lemma 3.1, there exists a positive integer [ and a €y such that

mg—1

Apa(V) D {anrvenrj<m - sup {1 = [GIM Y Jai 1} < e}
keN [I]=0

Here we use the same notations as in Lemma 3.1. Thus, for each 1 < 5 < n we
can obtain sequences of holomorphic functions {g; s} with g;, € A,(B,) for
any k € N and 1 < j < n such that (gj ). =0, Vi |I| <m; except that

o' g; 1
Ozlk
1

() = A TG 1 = & ™ (+:1)

13




where {;, = 5k if my is even and [, = "’"2—_1 if m; is odd. We define, for

1 < j < n, the following functions

Fiz) = byl =[G, (4.2)

k=1
where h; i = g2 .(z) if my is even and hj = =609 (=) if my is odd, z =
gk = 95k k 3k T T A=) k ' 2=

(21, 25) and Cx = (C1 gy Cak)- It is clear that divy, (¢) > m and so that
V ¢ F~Y0), where F = (fy, -+, fn). We claim that f; € A,(B,,) for each
1 < j < n. In fact, since g; € Ap1(B,) for any & € N ., we have that for
z € By, |gk(2)] < m Therefore, we deduce that

(1G]
(1—]z)*

|97 £ (N1 = [G*M <

By Lemma 3.4 (ii), taking a M sufficiently large, we see that the series (3.2) is

uniformly convergent in closed sets of B,,, and moreover |f;(z)| < (1_’!1 ek €

B,, for some constants A > 0; that is , f, € A,(B,).

Next we show that there are positive constants €, C' such that the “tube”
S(F:e, C) satisfies the conclusion of the theorem. To this end, let &k > 0 and
let w = (u1,---,u,) be a unit vector in C™. Then there exists a j (1 < j < n)

1

such that u; > T For this fixed j, consider the Taylor expansion of f;(z) at

(x. One can verify that, in view of (4.1) and (4.2),

Filz) = @M1 =[G (2 — G)™ + ) Crlz— )

[ I|>mg+ni

s

where ny = 5% if my is even and ny = mitl

if my i1s odd, Cy’s are complex

numbers. From the above expansion, we deduce that for w € B; C C,

Fi(w) := [;(Ck +uvV N1 — [G)w) = ™ + Z bjw, (4.3)

J<m+ng

14




; . —myg N .
where €; = e%u;'”‘ vV and b;’s are complex numbers. Noting that A < % we
obtain that

€ > 68(____)7r1,k(_)—77Lk = (44)

Let
d, = min{1.dist (0.F;(0)\ {O})}

and set G;(w) = L) Then |G (w)] <

mk for some constants A, B > 0

A
(1-1¢D¥
on |w| = 1 and thus in |w| < 1 by the maximum modulus theorem. Also let
H;(w) = G;(w) — G;(0). Then by (4.3), we see that H;(w) has a zero at w =0

of order at least ny. Note that |H;(w)| < for some constants A, B > 0

A
(1-[¢N®?
on |w| < 1. We have , by Lemma 3.3, that

[ Hj(w)] < Jw]™*

A
(1 —1G])P
on Jw| < 1. Thus, if a # 0 is a zero of Fj(w) in |w| < 1, then G;(a) = 0 and
thus that

[Hj(a)| = |G;(0)] = &1 > ¢
by (4.3) and (4.4), from which it follows that
la™ > [H;(a)| A7 (1~ |G)”
and thus that d™* > €(1— |(x|)€ for some constants €, C' > 0, which implies that
dme > e(1—|C])¢

Therefore,

L < 1
dy > €7k (1 — |(]) ™% = Xdk, (4.5)

where 0 < ¢ < 1 and C are two constants. Note that G;(w) has no zero

in |w] < %dk by the construction of d,. Recall the following result from the



Carathéodory theorem (see e.g. [L]): If & is holomorphic and has no zero in

lw] < R with R(0) = 1, then log |h(w)| > —RQ'_”T log max|,|=r{|A(w)]} for |w] <

r < R. Applying it to G;(w) in |w| < %dk we deduce that for |w| < dj

Gj(w) 2\ (w)
> -
gl e o ! 2 " 1=x log(lﬁ?fffk“

71,

which implies that |G;(w)] > €(1 — [(x])¢ for some constants e,C > 0. In
particular, for |w| = dj,

Fj{w)] = ™ Gj(w)|

> (AT (1= [Gu) 7 ™ e(1 — |G))C = e(1 — | Gu])€

for some €, C' >) by virtue of (4.5) and Lemma 3.4(i).

So far we have proved that for a given unit vector u € C", there exists a
7 (1 < j < n) such that |f;(C + uVA(1 = |G Dw)] > e(1 — [Ck])C on |w| = dy.,
where the constants ¢, C are independent of w and k. Therefore, for z € B,, with

|z — k| = VAL — |Ce])dy, we always have that
2)| = Zm 2 el -G

for some €, C > 0. Now consider the neighborhood Uy := {z € C™ : |z — (3| <
VA1 — |G| )} of ¢ By the above result, we know that |F(z)| > (1 — [(])€
on OU. Recall that S(F;e,C) = {z € C" : |F(z)| < €(1 —|¢])¢}. Thus the
connected component Vi of S(F; e, C) containing (y, is clearly contained in Uy.
By the construction of dj, we see that Uy, and thus V}, has diameter less than
A(1 —|Cx]) and does not contain other points of V. (If m > n, we can easily add
m —n entire functions f,411,---. f., so that fi, fa,---. f,, satisfy the conclusion
of the theorem. ) This completes the proof of the necessity.

To prove the sufficiency, let V}, be the connected component of S(F':e¢, C)

containing (x. Suppose that {ax 1} C17>(V) be a given multi-indexed sequence
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with

myg—1 A
_ Ia“ -
mzzo(/\(l [Ce)) lan.1| < AL

for some constants A, B > 0. We define an analytic function v : S(F;¢,C) — C

by

’Y(Z) = { Z[}Lr:_(]l ak-,f(z - Ck)la if z € Vi
v if z € S(F:e.C)\ UrenVi-

Then it is clear that v¢.; = ap s for & € N and 0 < |I| < my — 1. Since

|z — Ci] < A(1 = |Ck]) on Vi by the assumption, we see that, for z € S(F:¢,C),

mg—1 A
J— I —
[v(2)] < |§::0(/\(1 CkD)) Jak.1| < A=G)P

Note that for z € S(F.,¢,C),

L—[Cel 21— (I¢k — 2|+ |2]) = (1= |2]) = A1 —|{&])

or 1 — |Cx| > 11_‘)‘ by the assumption. We deduce that

|2

A

[v(2)| < A=) (4.6)

for some A, B > 0 for z € S(F,e,C) and thus for z € B,,. We will extend

to a holomorphic function in A=>(B,,) by the L?-estimate for J equations (cf.

[BT]. [H] and [KT]). Since g{’ e A7>(B,).

—~ 0/ A
Z| B (z)] < A=)

=1
for z € B,, and some A.B > (0. Take a small ¢; < € and a large C; > C. We

assert that the distance d(z) of a point z € S(F:€;,Cy) to the complement of
S(F:e, C) satisties that

d(z) > ex(1 — |2)° (4.7)
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for some small €5 < ¢; and large Co > C. Otherwise there would be a w on the

boundary of (F:e,C) such that |w — 2| < €2(1 — |2])¢2. Then

A gy
Fw) = f(2)] = / 9w — )]

o dt
1 n A
<J|w— z|/0 ; g‘zj(z + (w — 2)t)|
A
Co
=l = e
Then
[f(w)| < 1f(2)] +1f(2) = fw)]
A
<ea(l—|z)9 + el - |Z’)CQW

<e(1-12)°

if €1. €y are taken sufficiently small and Cy, Cy sufficiently large. It is contradict
to the choice of the point of w. Now we can choose a cut-off function y € C*

(see [BG1, p18]) such that 0 < x <1,

A B A
10x| < A(d(2))” < 1=2))F

in view of 4.7, x = 1 on S(F:€;,Cy) and x = 0 on a neighborhood of the
complement of S(F;e,C). Then ¢ := v0x is a d closed form. By virtue of (4.6)
and the fact that |F(2)| > (1 —]z])¢ for z € supp(¢). for each a > 0 there exist

a 3 > 0 such that

' Hl2)|? '
./B ||f€'§z;||a (1= [2])’dm < .

By theorem 2.6 in [KT] there exist 0 closed (0, 1)-forms ¢1, ¢pa, - -, ¢y and some

q > 0 such that ¢ = ¢1f1 + -+ + G fr and

[ 2P = ey tam < .

n

Thus by Homander’s theorem [H], there exist solutions ; to the J equations

Op; = ¢; satisfying the L?-estimate:

/ [(2))%(1 — |2])9dm < oco.
B,
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Define f = yx — 27[":1 Y;f;. Then
Of =vx— Y _fib;=¢—> fid;=0
j=1 7=1

and furthermore

/. 1F(2)(1 = |z))*dm < .

n

for some A > 0, which implies that f is in one of the weighted Bergman space
and thus in A=>°(B,,). By checking its Taylor expansion about (i, we easily
see that fr; = yu.; = ag,s for & € N and 0 < |I] < my, — 1. This shows that V/

is an interpolating variety for A,(C"). O
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