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Abstract: A necessary and sufficient condition is obtained for a discrete multiplicity

variety to be an interpolating variety for the space Ag(C”).
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§1. Introduction. In this paper, we will consider interpolation problems for
the space Ag(C”), which is the ring of entire functions in C™ satisfying that
for every € > 0, there exists a constant A, > 0 such that |f(2)] < AP
for z € C™, i.e., sup,ccn{|f(2)|e”P#} < 400, where p is a weight (see § 2).
The space Ag(C") is an important class of entire functions in both complex
analysis and harmonic analysis. When p(z) = |z|, the ring A?z[(C"), via
Fourier-Borel transformation, topologically isomorphic to the ring of infinite
order differential operators. The space has a natural projective limit structure
and under its locally convex topology it becomes a nuclear Fréchet algebra.
This kind of algebra appears naturally in functional analysis.

Let {(} be a discrete set in C™ and {m4} a sequence of positive integers.
If for any multi-indexed sequence {a 1 }reN,0<|7|<m, Of complex numbers in

Ag(V), the space of sequences {ax 1 }reN,0<|1|<m, Satisfying that for any € > 0,

mp—1
D lakg) < A, keN,
| I{=0

for some constants A, > 0, where I = (i1,---,4,) € (Z7)™ and |I| = i1 +is +

* Supported in part by NSF Grant DMS-0100486



... 4 1i,, there always exists an entire function f in A)(C™) such that

1 9£(G)

S = ag, for keN,0< || <my. (1.1)
: z

We will then say that V := {({x, mx)} is an interpolating variety for Ag(C”).
Clearly the condition (1.1) means that f has a prescribed finite collection of
Taylor coefficients at each (x. If my = 1 for all k, then (1.1) simply means
that f has prescribed values at given points (k.

Note that the constant A, in the definition of AJ(C™) depends on arbi-
trarily given €, which makes it impossible to become a space A,(C") for any
weight p, where A,(C™) is the algebra of entire functions in C™ satisfying that
|f(2)| < AePP&), 2 € C™ for some fixed A, B > 0. To study problems such as
analytic continuation for Dirichlet series and representation of analytic solu-
tions of partial differential equations of infinite order, one needs to consider
the interpolation problem for the space AD(C") (see e.g. [BG][BKS|[BLV] and
references therein), instead of the one for A,(C"), for which various results
for interpolation are known. Note that the growth condition for AJ(C™) is
evidently more restrictive than the one for A,(C™), which makes the interpo-
lation problem for A2(C™) more delicate than the one for A,(C"). In [BKS],
a sufficient interpolation condition for Ag(C"), using distribution of points
of V in a “tube neighborhood” of V, was obtained from A,(C") for certain
varieties by expressing A9(C™) as a sort of inductive limit of A,(C™) (cf. § 2).
It however does not provide methods for necessary interpolation conditions.
The main purpose of this paper is to give a similar interpolation condition,
which is both necessary and sufficient for interpolation in AY(C™) and which
applies to arbitrary discrete multiplicity varieties in C™. We will state the

theorem in §2 and give its proof in §3.



§2. Definitions and Results. We first fix some notions and notations,
which will be used throughout the paper.
Definition 2.1. A plurisubharmonic function p:C"*—[0, 00) is called a weight

(function) if it satisfies the following conditions:

log(1 + |2*) = o{p(2)} (2.1)

and

p(2) = p(|2), p(22) = O{p(2)}- (2.2)

Definition 2.2 . Let A(C™) be the ring of all entire functions on C™. Then
0 n
A (C) =
{f € A(C™) : Ve > 0,3A. > 0, such that |f(z)| < Acexp(ep(2)),z € C"}.

A simple but important example of weighted spaces A3(C") is A?ZI(C"),
which is the space of entire functions of infraexponential type and plays im-
portant roles in Dirichlet series and Fabry type gap theorems.

Let f # 0 be a holomorphic function on an open connected neighborhood
of ( € C™. Then a series f(2) = ) 2, Pj(z — () converges uniformly on
some neighborhood of ¢ and represents f on this neighborhood. Here P; is a
homogeneous polynomial of degree j and P, # 0. The nonnegative integer v,
uniquely determined by f and (, is called the zero multiplicity, or zero divisor
of f at ¢, denoted by div(().

Let V = {(¢x,m&)} be a multiplicity variety; that is, a discrete set {(x} C
C™ with [¢] — oo together with a sequence {my} of positive integers. We

write V' C f~1(0) if divy({x) > my for each k, i.e., each (x is a zero of f of



multiplicity at least mg. Associated to V, there is a unique closed ideal in
A(CM),
J=JV):={f € A(C") : divg((x) > ms, Vk}.

Two entire functions g, h in C™ can be identified modulo J if and only

AMg(G) _ 9Mh(Ck)
= <
51 o ,0 |I]<mk,k€N,

here and throughout the paper, we use I to denote a muti-index; that is,

I = (i1, -+,in) € (ZV)",Z* = {0,1,2,---}. The quotient space A(C")/J

can be identified to the space A(V') of all sequences {ax,1}ren,0<|rj<m, Of
complex numbers, which can be described as “analytic functions ” on V. The
map "
A £ (¢)
pip(f) = {55, renosin<m. (2.3)
is the natural restriction map from A(C") into A(V).

Definition 2.3. Let V = {({x,m)} be a multiplicity variety on C™. Then

we define
AN(V) ={a={ar1} € A(V):Ve> 0,34, >0,
mk—l
such that Z lak 1] < Acexp(ep(Ce)), k € N}.
|1]=0

Using Cauchy’s estimates, it is easy to check that p is a map from A?,(C”) to
A%(V). But, in general, the space A(V) is too large.
Definition 2.4. A multiplicity variety V' = {((x, m«)} is an interpolating
variety for A)(C™) if the restriction map p is surjective from A9(C™) to AY(V).
Clearly, that V is an interpolating variety for Ag(C") means that for
any multi-indexed sequence {ar;} € A)(V) there exists an entire function
f € AYC™) such that 218 — g, f for all k € N and 0 < |I] < my; ie.,
f has a described finite collection of Taylor coefficients (and f has prescribed

values if my = 1 for all k).



We obtain the following both necessary and sufficient interpolation con-
ditions, which applies to arbitrary multiplicity varieties in C™.
Theorem 2.5 Let V = {({x, mi)} be a multiplicity variety in C™ and N > n
a positive integer. Then V is an interpolating variety for A,(C") if and
only if there exist an entire holomorphic mapping f = (f1, fo, -+, fn) with
f; € AJ(C™) and a positive function q(z) = o{p(z)} such that V C F71H0)

and, for some constants €,C > 0, each connected component of the set
S.(f;6,C) ={z € C":|f(2)] < ee €4} (2.4)

contains at most one point in V and such a component has diameter at most
one.

Remark. (i) The above condition is given by means of distribution of points
of V in a “ tube neighborhood” S(f;e,c) of the variety V. Distribution of
points of V in such a tube neighborhood of V plays important roles in study of
interpolation problems and slowly decreasing ideals (see e.g. [BKS][BT][LV]).
A similar sufficient condition was given in [BKS, Theorem 3.2] for the case
when V is the complete intersection of zero sets of some locally slowly decreas-
ing functions in A)(C™), which is the main interpolation theorem in [BKS]
used to prove the gap theorems in [BKS, § 4]. The notion of fi, fa,---, fn
being locally slowly decreasing is that there are positive constants e, C, C1, Cs
and a weight ¢ such that the set S,(f;e, C) has bounded connected compo-
nents, which are such that p(z) < Cip(¢) + Cs if z,{ belong to the same
component. It seems that the condition on the diameter of connected com-
ponents of the “tube” is missing in the theorem in [BKS], which can not be
deduced from the “locally slowly decreasing” assumption due to the presence
of multiplicities.

(ii) Note that the multiplicity varieties in Theorem 2.5 may be arbitrarily



given. If my = 1 for all k, then the condition in Theorem 2.5 is equivalent
to an estimate on minors of the Jacobian matrix of the entire holomorphic
mapping f in the theorem. Some other related work may be found in [BLV],
[BKS], [BT], [Li], and [LV]. These work inspired and benefited the present
paper.

We conclude this section by the following corollary, as an illustration for
use of the both necessary and sufficient conditions of Theorem 2.5. It does
not seem trivial to see whether an interpolating variety for A?ZI(C") is an
interpolating variety for A,):(C™). This is however a trivial consequence of
the following general result.

Corollary 2.6. If a multiplicity variety V = {((x, mi)} in C™ is an interpo-
lating variety for Ag(C"), then it is also an interpolating variety for A%(C™)
for any weight u > p.

Proof. By the necessary condition of Theorem 2.5, there exist an entire holo-
morphic mapping f = (f1, f2, -, fn) and a positive function ¢(z) = o{p(z)}
satisfying the conditions in Theorem 2.5. Since u > p, we have that AS(C”) -
A%(C™) and q(z) = o{u(2)}. Thus, all the conditions in Theorem 2.5 also hold
for AY(C™). By the sufficient condition of Theorem 2.5, V' is an interpolating
variety for A% (C").

83. Proof of Theorem 2.1. For convenience, in the following proof we will
use 0 < € < 1,¢ > 0 to denote numerical constants, which may dependent on

n and the actual value of which may vary from one occurences to the next.

We first give the proof of the necessity, which is rather complicated.
To this end, we first write down explicitly the projective limit topologies of

Ag(C") and Ag(V) by specifying their neighborhood bases. For each positive



integer m, we introduce the following space A, = {f € A(C") : [|fllm.0 <
+oo}, where ||fllm.co = sup,can{|f(z)le"mP*)} < oco}. The space A(C™)
can be identified with the space {(f,f,f,---,) : f € Ag(C”)}, which is a
subspace of the product space Ay x Az x A3 x - - - and is the projective limit of
the family {4,,}3°_; with respect to the natural projections of A, to A; for
I < m (see e.g. [S] for basics of projective limit topology). A neighborhood
base of f € A)(C™) is given by all the intersections

Ag(cn) N (nmeHUm) (3~1))

where U,, is any neighborhood of f in A4,, with respect to the topology induced
by ||fllm,co and H is any finite subset of N. AJ(C™) is metrizable as (by the
above identification) a subset of a product of countable family of metrizable
topological vector spaces and complete as a projective limit of complete locally
convex spaces.

In the same way we set A,,(V) = {a = {ak 1} : ||la|lm,00 < +00, where
llallm oo == SupkeN,]Il<mk{Zr;|k:_ol lak,z|e~ =P}, Then A%(V) can be iden-
tified with the space A(V) = {(a,a,...,q,...) : a € A)(V)}, which is a
subspace of A1 (V) x Ay(V) x A3(V) x - - - and is the projective limit of A,,(V)
with respect to the natural projections of A, (V) to A(V) for [ < m. A
neighborhood base of a € AY(V) is given by all the intersections

AX(V) N (NmerVim), (3.2)

where V,,, is any neighborhood of a with respect to the topology in A,,(V)
induced by |{|al|m,c0, Where I is any finite subset of N. The space AY(V) is
also metrizable and complete.

Consider the map ¢ : AJ(C") — AY(V) defined in (2.3). Then it is

surjective since V' is an interpolating variety for Ag(C”). It is also easy to



check that ¢ is linear and continuous. Thus, by the open mapping theorem
(see e.g. [H, p.294]), ¢ maps every neighborhood of 0 in A?,(C”) onto a
neighborhood of 0 in AJ(V).

We set for each positive integer m,
Ur?l ={fe Ag(cn) : Hf“m,oo < L},

where L,, > 1 is a (yet to be determined) positive number. We claim that we

can take L,, properly so that the image go(ﬁ;”:lU]Q contains a set of the form
W2 = {a={aps} € Ag(V) Nlallin.co < Ymbs (3.3)

where l,,,, Ym are positive numbers, and -y, satisfies the condition that v, > 1.
In fact, it is clear that UJ, = Uy, N AY(C™), where U, = {f € A(C") :
| fllm.oo < Lm}- By (3.1), we know that U2, is a neighborhood of 0 in AJ(C™).
Then N7, U is also a neighborhood of 0 in AJ(C™). Since the restriction map
¢ maps a neighborhood of 0 in A%(C™) onto a neighborhood of 0 in A%(V),
@(N72,U7) contains a neighborhood of 0 in AY(V)) and so, by (3.2), contains
an open set of the form (NmerVim) N AY(V), where V,,, is a neighborhood of 0
with respect to the topology in A,,(V) and [ is a finite subset of N. We then
deduce that there exist an integer {,, > 0 and a 7, > 0 such that @(ﬂ;-":lUJQ)
contains the set W2 in (3.3). However, the positive constant -y, obtained
above might not satisfy the required condition that <y, > 1. If this happens
for some m, we then need to revise the above sets. Suppose that m is the
smallest positive integer so that v, < 1 (m might be 1). We then replace L;

by ;%:lj for 1 < 7 < 'm, and replace UJQ by

[7;? = ’YLUJQ = {—’y—l-—f:fEU]Q}
= {f € AAC™) < |0 < %Lj}



for 1 < j < m. One can then check, in view of the lineality of ¢, that for each
1< <m,
i 70 i 1 o
‘P(njlej) = ‘P(mj:1(jy‘“Uj )
1 i
2 —90(0]‘:1(]]('))

m

Lo < MR- i} = w2,

1

1
2 —W) = {a={ars} € A(V):la|

Ym 'm

where 4; = :;% > 1 for each 1 < i < m, in view of the fact that m is the
smallest integer satisfying that v, < 1 and thus that 4; = :;7; > > 1 for
1 <i<m-—1, and also that 4, = Tm = 1. Thus, we can replace W2 by
Wf) for each 1 < 7 < m, which satisfies the desired requirement that 4; > 1
for each 1 < ¢ < m. We can continue this process. If 4,41 > 1, we have
nothing to revise. If y,11 < 1, we then use the above way to get revised
sets Wio,l < i < m+1, for which we have that 4; > 1 for 1 <i <m+ 1.
Continuing this way, we eventually obtain a sequence of sets in A)(C™), still
denoted by UC,, and a sequence of sets in Ag(V), still denoted by W2 | which
satisfy that w(ﬂTlef) D W? and «,, > 1 for each integer m > 1. This
proves the claim.

Next, we will use W2 to produce a sequence of functions with cer-
tain “good” properties, which will help us to construct the desired map-
ping in the theorem. For each fixed ¥ € N and 1 < i < n, the fact
that the set ¢(N72,U?) contains WY, in (3.3) implies that there exists a
sequence {g k,m}m=1 of entire functions such that gixm € NJ_,U7 and
W(Gikm) = {QI—I-I—%—;;FM}%N,OS“K"% € W2 with all the terms in this se-
quence being zero except one being 1, specified as follows

Mg, 1. m () 3% g; k.m(Ck)

By 0,VL,V0 < |I| < my; except that 101

=1, (3.4)



where [ = 5~ if my is even and Il = -’1%_—1 if my is odd. (This sequence
clearly belongs to W2 . And it is here where we used the fact that v, > 1).
The fact that g; x.m € ﬂ;”le]Q implies that ||g; km|lje < Lj for 1 <j<m
and so that

(=)
|gikm(2)] < Lje 7 ,1<j<m,zeC" (3.5)

In particular, |g; k.m(2)] < L1eP*),z € C™. By (2.2), it is easy to check that

there are two constants A, B > 1 such that
p(w) < Ap(z) + B (3.6)

whenever |w ~z| < 24/n. Thus, we see that {g; k. m } v~ is uniformly bounded
in compact sets in C™ and so that {g; k »} is a normal family by Montel’s
theorem (see e.g. [G]). Thus, by passing to a subsequence we can assume that
{9i k.m} converges to a function g;, in C™ as m — oo, which is an entire

function in C™ by the Weierstrass theorem. Clearly, g; » also satisfies that

111, i
o g;’;(gl) =0,V[,V0 < |I| <my; except that M@ =1, (37

lk!é?zék
since each g; ., satisfies (3.4). Also, by (3.5) and noting that
limuy, 500 Gik,m(2) = ¢ik(z), for each m and each 2z € C" there exists an

integer mg > m such that

1961 (2)] < 19:,8(2) = Ghsi;mo (2)] + |9k,i,m0 (2)]

(=)
<1+ |Gk img(2)] S 1+ Lje™s

for each 1 < j < my. In particular,

P r(z)

(=
lg:k(2)] <1+ Lpye o <2Le .

Since this inequality is true for each m, we deduce that

|9:,£(2)| < exp(inf{log(2Lym) + %P(z)}) = exp(q1(2)), (3.8)

10



where

. 1
q1(2) = inf{log(2Lm) + —p(2)}- (3.9)
Clearly, ¢ is a small function of p, i.e., ¢1(z) = o{p(2)}.
Fix a positive number K satisfying that

1
— _do:=L < +oo, 3.10
ﬂwuHmK“ “ (310

where do is the Euclidean volume element in C*. Now we define for each

fixed integer i(1 < i < n),
o0 1 "
fi(2) = kzzl hi,k(z)W exp(—2nAq (), z € C (3.11)

where h;;, = g?’k if my is evan and h;p = (z; — Ck’i)gf”k if my is odd; z =
(z1,22, 5, 2n), C& = (Ce1y- 3 Ckon), and A is the number in (3.6). We will
prove that f; € Ag(C”). We denote by f; x the general term of the series in
(3.11). We then have, by virtue of (3.8), that

|fie(2)] < (2] + [Gel)e? @@ exp(—2nAq (Ck))

1
(14 [Ce )+

(1—+—lfl,:|5m_1 exp(—2nAqi((r)) (3.12)

1
AL exp(—2nAq (().

< (L 2L+ (Gt ®
= (142
Set di = min{1,infisc{|z — Cx|}}, and Dy = B((, %), the ball centered

at (. with radius ‘—1-2&. Then dx < 1and Dy ND; =@ for k # [. By (3.9) and
(3.6), when |z — w| < 2(y/n + 1), we have that

0(2) < inf{log(2Lm) + — (Ap(w) + B)} -
3.13
< AiYI}Lf{log(ZLm) + %p(w)} + B = Aq(w) + B,

11



where A and B are the numbers in (3.6). If di < 1, then there is a z; €
V N B((x, 1) such that z; # (x and di, = |z; — (|- Recall the C™ version of
Schwarz’s Lemma (see e.g. [Gu,p7]): If f is holomorphic in an open neighbor-
hood of a closed ball B((,r) in C™ centered at ¢ and with radius r, | f(2)| < M
for z € B((,r), and %Izlfi(C) = 0 whenever |I| < m for some m € N, then
If(z)] € Mr~™|z —(|™ for z € B(¢,r). We will apply this result to the

function ij;—’—f;;(—z) in the disk B((x,1). By (3.7) we know that 9:;_"_[9_:5‘_(_%;)_ =1

l .
and 2 ;g’;'g") = 0. Also, by Cauchy’s estimate, we know that
9%,

Abig;
D1960C) <o max {jg ()]} < cern@P,
1,192 weCm:uw—z<1"

in view of (3.8) and (3.13). Thus, by the Schwarz Lemma,

Blf ii\Z
P < pornicorof, g
0z

1

for |z — (x| < 1, and in particular,

8[_,' i .
1= | .Z,JIJ(CJ)l < ceAql(Ck)+BKj _ Ck'a
2z,

2

or dy, = |¢; — (k| > ee~A0(x). This inequality is obviously also true if dj, = 1.

Therefore in any case the volume of the ball Dy, satisfies that

™ d
volDy, = f—(—]i

)2n > €e~2nAq1 (€k) )
n!

7 )2
We thus deduce, by (3.12), that

1

1
vol(Dy,) /pk (L+[GD¥
2z [ L
S HlEDE ) AR

|fir(2)] < (1 4|z’ exp(—2nAqi((e))do

(3.14)

12



where do is the Euclidean volume element in C™. Note that if z € D,
L+ ]2l < 14 ]z— Gl + |¢e]) < 2+ |G| < 2(1 +[Ckl)-

Therefore, in view of the fact that Dy N Dy = @ for k # [, we have that

Z-/Dk (1+|Ck|)K Z/D (1+I21

1
<2 [ do = 2V
o T+ TDF

by (3.10). Also, by (3.13), g(w) < Aqi(z) + B whenever |w — z| < 1. We thus

(3.15)

have showed that the series f; = > oo fi.x converges uniformly in compact
sets in C™ and so that f; is an entire function in C™. Moreover, by virtue of

(3.14) and (3.15), we have that
[£:(2)] < (1 + |2])e? . (3.16)

But (1 + |2])e?0(?) = elog(+zD)+2a1(2) — go{r(2)} by (2.1) and (3.9). We thus
conclude that f; € AJ(C™).

Let f = (f1,f2, -+, fn). It is obvious that V C f~1(0) by the construc-
tion of each f; (see (3.7) and (3.11)). Next we will find a positive function such
that a tube neighbourhood S(f;e, C) satisfies the conditions in the theorem.
By (3.11) and (3.7) one can check that f;,1 < i < n, can be expanded into

the following power series at each (g,
fi(z) = ez — Gra) ™ +

+ Z Cip i (= Cop)™ -+ (20 = i) -+ (G — Cin)™,
g bin > M
(3.17)

where
1

(1+|Ck])K +1

Cr = exp(—2nAqi((k)), (3.18)

13



. . mg+1
1+in 8 are complex numbers, and ng = & if my is even and ng = g—’;—)

C;
if my 1s odd.

Next, we let u = (uq,---,u,) be a unit vector in C™. Then there exists
a i (1 <i<mn)such that u; > ﬁ For this fixed i, we have, by (3.17), that
for w € C,

Fi(w) = fi(G + viuw) = (V)™ cpul™w™ +new™ + Y bjuw’, (3.19)

J>sk

where s > 3% is an integer, m and b; are complex numbers.

Let Gi(w) = %,(n%l Then G;(0) = (v/n)™cru;™* > c. By (3.16) and
(3.13) we have that for |w| = 1, |G;(w)| < c(1+]zx|)e?4% () which is also true
in jw| < 1 by the maximum modulus theorem. Also let H;(w) = G;(w)—G;(0).
Then by (3.19), we see that H;(w) has a zero at w = 0 of order at least =&.
Note that |H;(w)| < 2¢(1+4|2x])e249:€x) on |w| < 1. We have, by the Schwartz
lemma, that

|H;(w)] < 2¢(1 + |zi]) €249 60 o) F*

on |w| < 1. Thus, if a # 0 is a zero of F;(w) in |w| < 1, then G;(a) = 0 and
thus that

26(1+ e o F > |Hia)] = G:(0)] = (V)™ exei™ > e,
or,

] > (20) 711 + |Ge|) N2 HAFMNCR) > (1 + |¢]) e en ),
for some €, ¢ > 0, in view of (3.18). If we let

d, = min{1,dist (0, F;1(0)\ {O})}.

14



Then we have that
i > (14 |¢p]) "o on ) = (2v/ndy) ™. (3.20)

Note that G;(w) has no zero in |w| < 2d; < d, by the construction of d,.
Recall the following result from the Carathéodory theorem (see e.g. {Le]): If
h is holomorphic and has no zero in |w| < R with h(0) = 1, then log |h(w)] >
)|} for |w|] < r < R. Applying it to G;(w) in |w| <

2dy, we deduce that for |w| < di

Gi(O)

log

210g( max {| G, (O) |}

which implies that
log |G(w)] > —210g('rrlla31( {|1G:(w)}) + 3log |G:(0)]
Wi{=dag

and so that
Gi(w)| = (Iﬁgﬁk{lGi(w)})_ZlGi(O)|3
> e M1+ |a]) 2e AN ) > (1 |z |) Ceen )
for some €,¢ > 0. By (3.20) we have, for |w| = dj, that
[Fi(w)] = ™ Gi(w)| = di™|Gi(w)]

> mEe(] —c —CQ1(Ck)_
> (el + ) e

On the other hand, by (3.17), (3.16), and by the Cauchy estimates,

L 9™ fi((r)

(mk)' oz |

< G AN < G

CkZI

1+ z ezAQ(zk),

15



where P, = z € C™ : |z; — (i ;] < 24/n,1 < j < n. Hence,

1
(G Z el +la) e

and we finally obtain that on |w| = dj,
| £:(Ce + Vnuw)| = |Fi(w)| > ee 1),

for some ¢,¢ > 0 independent of u and k, where g(z) = log(1 + |2]) + qi(2) =
o{p(z)} by (2.1) and the fact that ¢;(2) = o{p(2)}.

Since the above u is an arbitrary unit vector, we thus have showed that

|F(Ck + 2)| > | £i(Cr + 2)| > ee™°9Cx)
for |z| = v/ndy. By virtue of (3.13) we have that
|f(2)] > ee= 1)

for some €,C > 0 on |z — (;| = \/ndy. Note that \/ndy < 3d, <1 in view of
(3.20). We have thus showed that the connected component Uy of S(f;e¢,c) =
{z € C" : |f(2)] < ee~C9)} containing (& must be completely contained in
the ball |z — (x| = v/ndk, which has diameter at most 1 and does not contain
any other points of V. This shows the necessity of the theorem when n = N.
If N > n, we can easily add N — n entire functions f11,---, fy € AJ(C")
satisfying V. C f;'(0),n+1 < j < N. Let F = (fi, f2,---,fn). Then
Sq(F;€,C) C Sy(f,€,C). Thus, the mapping F satisfies the conclusion of the
theorem.
The proof of the sufficiency is much simpler. Suppose that

{ak,1}ren0<1]<m, € AQ(V) be any given sequence. It suffices to find an entire
function F € AJ(C™) such that ol F(z) ag,1 for all k € N, 0 < |I| < my.

11921
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For any integer m there exists a ¢, > 1 such that Zm“:_ol lag 1| < cmemPEE)

for each k € N since {ak 1} € Ag(V) and, meanwhile, |f(z)| < cme#p(zk) for

each z € C", since f € A)(C™). Thus,

mg—1
X . 1
> langl < exp(inf{log e + T—n—p(zk)}) (3.21)
|11=0
for each k and
. 1
|f(2)] < exp(inf{log cm + —p(2)}) (3.22)

for z € C™. Define

0(2) = inf{log e+ —-p(2)},  a(2) = max{a(2), 9a(2)}:

Then a(z) = o{p(z)}. We recall the following theorem in [BMT, 1.7 and
1.8]: For any continuous and increasing function w(r), if w(r) satisfies (2.1)
and (2.2), and w(e”) is convex, then for any function h(r) : [0,00) — [0, 00)
satisfying that h(r) = o(w(r)) there exists an increasing function g(r) such
that g satisfies (2.1) and (2.2), g(e") is convex, and h(r) = o{g(r)} and g(r) =
o{w(r)}. Applying this result with w = p and h = a we obtain an increasing
function ¢,(r) satisfying (2.1), (2.2), g.(e”) is convex, and a(r) = o{q.(r)}
and ¢,(r) = o{p(r)}. Note the fact that H o u is plurisubharmonic if H
is convex and increasing, and u is plurisubharmonic. We thus have that
da(]z|]) = ga(e™!?!) is plurisubharmonic and so that q.(|z|) is a weight. It
is clear, by (3.21) and (3.22), that Zr;f:—ol lag 1| < e%(*) for each k, and
If(2)] < e%®) for each z € C", which implies that f € Ag, (C™). Also,
it is obvious that S, (f,€,C) € S4(f, €, C). Thus, by the hypotheses of the
theorem, each connect component of Sy, (f,¢,C) contains at most one point

in V and such a component has diameter at most 1. Let Uy be the connected
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component of Sy, (f, €, C) containing z,. We define an analytic function A :
Sq.(fr6,C) = C by

Az) = {Eﬁf;& ak,r(z — z)!, if z € U;
0, ifzeSqa(f,€,C)\UkeNUk.

Uy (5
Then it is clear that %—%l = ai s for all k € N and all 0 < |I} < my.
Moreover, on Uy, we have that |z — zx| < 1, since the diameter of Uy is at most
1, and thus that

IA(2)| = mkzl lag,1| < %) < eA9()+B (3.23)
11]=0

for some A, B > 0 by virtue of the property (2.2) of a weight, which implies
that q,(w) < Aq.(z) + B whenever |w — z| < 1. By the definition of A, the
estimate (3.23) holds for all z in S, (f; €, C). We then use the following result
in [BT, Theorem 2.2]: If X is analytic and satisfies that |A(z)| < e49(=)*5 for
some A, B > 0 on Sy(f,€,C), where g is a weight and f = (f1, f2,- -, fm) :
C™ — C™ is an entire holomorphic mapping with f; € A4(C"), then there
exist an entire function F' € A4(C") such that F(z) = A(z) on the variety
f(z) = 0. Applying this result to our function A, we obtain a function F' €
Ag (C™) C AJ(C™) such that F(z) = A(z) on f71(0) 2 V. In particular,

% 8”191:5“) = % 6”:9);(,2"“) = ay  for all k € N and all 0 < |I| < my. This shows

that V is an interpolating variety for Ag(C"), and thus concludes the proof.
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