INTERPOLATING MULTIPLICITY VARIETIES IN C”
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Abstract: We shall give a necessary and sufficient condition for a discrete multi-
plicity variety in C™ to be an interpolating variety for weighted spaces of entire

functions.

§1. Introduction. In this paper, we shall consider when a discrete multiplic-

ity variety in C™ is an interpolating variety for entire functions with growth

conditioms.
Let f be an entire function and {(x} a discrete set in C™ . Then we have

the following Taylor expansion at each (x:

f(Z): Z fkyI(z—Ck)I7 Z:(ZlaZZ;"'7Zn)ECn,
|I|=0
I . ,
= J I L= (i) € (20

where (and throughout the paper) fir :
is a multi-index, Z7 = {0,1,2---}, and |I| =41 + 12+ + in.

Let p be a plurisubhamonic weight function in C™ and {my} a sequence of
positive integers. We consider the following interpolation problem with multi-

plicities: under what conditions is it true that for any multi-indexed sequence

{ak1}reN0<|I|<m, Of complex numbers satisfying that

m;‘.——l
Z lag.r| < AeBPCs) ke N:= {12},
{I1=0
for some constants A, B > 0, there exists an entire function in C™ such that
(1.1)

fk.[ = a1, for ]\TEN,OS l[l < my,
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where I := (i1, --,in) € (Z1)™ is a multi-index, and f satisfies the same kind

of growth condition, namely, f € A,(C"), or equivalently,
|f(2)] < A'ePPD) ze C"

for some constants A’, B’ > 0. We will then say that V := {((x,m¢)} is an
interpolating (multiplicity) variety for the weight p, or for A,(C™). Note that
the condition (1.1) means that f has a prescribed finite collection of Taylor
coefficients at each (. In the special case that my = 1 for all k, (1.1) simply
means that f takes prescribed values at each (.

The problem has been studied by many people due to its applications to
other subjects such as harmonic analysis, number theory and systems research
(see [BG], [BKS], [BL1], [BL2], [BT1], [BT2], [BT3], [EM], [L], [S], etc.). In par-
ticular, some interesting interpolation results were obtained by Berenstein and
Taylor in [BT1] when V = {(x} is a complete intersection defined by so-called
slowly decreasing entire functions, where a vector function F' = (Fy,---, Fy),
F; € Ap(C™), is called slowly decreasing if and only if there exist ¢, C, €y, C2 > 0
such that

(i) the connected components of the set S(F;¢, C) are bounded, where

o

S(F;e,C) ={z€ C": [F(2)] := (Zle(Z)lz) <eexp(—Cp(z))};  (1.2)

(ii) if © is a component of S(F;e,C), then p(z) < Cip(w) + C2, for all
z,w € Q.

Note that the “tube” S(F';¢, C) plays an important role in interpolation. We
refer the reader to [BT1] for a class of examples of slowly decreasing functions.
With the above notion, the following interpolation result for a discrete set {(z}

without multiplicities was given in [BT1] :

no



Theorem A. Let F = (Fy,---,F,), F; € A,(C"), be slowly decreasing.
Assume that the discrete set V. = {(x} is the zero set of F' and each zero (y 18

simple; that 1s,

det Jp(Cx) #0  (Jrp = Jacobian matriz of F).

Then V = {(} is an interpolating variety for Ap(C™) if and only if there exist
constants €,C > 0 such that each component of the “tube” S(F;e, C) contains
at most one point in V.

An equivalent statement to this result in terms of the Jacobian of the defin-
ing functions was also given in [BT1]. Notice that Theorem A can only apply
to the discrete set V = {¢x} (without multiplicity) in C™ that is exactly the
complete intersection of some slowly decreasing functions. It was asked in [BT1,
p.213] whether or not it holds in general. Since in practice the multiplicity
problem naturally arises, and the set V' is generally not a complete intersection
of some slowly decreasing functions, it is a natural problem to find necessary
and sufficient interpolation conditions that can apply to any given multiplicity
varieties in C™. When n = 1, various results in this direction have been known
(see [BG], [BL2], [BT2], [S], etc.). When n > 1, the problem has been recently
considered in [BL1] for discrete varieties {(x} C C™ but without multiplicities,
where a necessary and sufficient interpolation condition in terms of the “direc-
tional derivatives” of defining functions was found. In this paper, we shall give
an answer to the above problem for general multiplicity varieties. A necessary
and sufficient interpolation condition, which applies to general multiplicity va-
rieties, will be given. It turns out that a multiplicity variety V = {(Cx,m)} is
an interpolating variety for A,(C™) if and only if there exist constants ¢, C >0,

and m(> n) functions fi,---, fm such that these functions vanish at each (i



with multiplicity > my, and each component of the “tube” S(F;¢,C) defined
as in (1.2), where F = (fi,---, fm), contains at most one point (; and such a
component has diameter at most one (see Theorem 2.6).

We note that the main result in the paper is the necessary interpolation
condition. If V = {(Cx,mx)} is an interpolating variety for A,(C™), then the
defining functions of V similar to those in [BL1] can be found, which however
can not satisfy our requirements, since there is no proper minimum modulus
theorem for holomorphic functions in several complex variables and thus the
multiplicity my, which may be unbounded and very large ( as large as p(Cr)),
makes it difficult to bound the defining vector function from below away from
each point of the variety, which is however essential for our conclusion. The key
ingredient for the proof is the construction of the defining functions Fy,---, Fy,
whose Taylor expansions at each point of the variety have “enough gaps” (see
the proof of Theorem 2.6). These gaps will enable us to show that the vector
function F = (Fy,---,F,) is “fairly” large away from each point (z, which is

crucial in the proof.

§2. Definitions and Results. The following definitions and notations will be

used throughout the paper.

Definition 2.1. A plurisubharmonic function p:C"—[0,00) is called a

weight (function) if it satisfies the following conditions:

log(1 + |2[*) = O{p(2)} (2.1)
and there exist positive constants D and Dj such that |z —w| < 1 implies that

p(z) < Dip(w) + Da. (2.2)



Definition 2.2. Let A(C™) be the ring of all entire functions on C™.Then
A (C™) = {f € A(C") : |f(z)| < Aexp(Bp(z)) for some A, B> 0}.

We note that it is not the specific conditions on p which are important, but
rather their consequences for the ring A,(C™). The (2.1) implies that A,(C™)
contains the polynomials, and (2.2) implies that A,(C™) is closed under differ-
entiation (see Lemma 3.3). One can replace the condition (2.2) by the following
Hormander’s condition [H] : there exist four positive constants cy,---,cs such
that |z — w| < e~1P{W)=¢= implies that p(z) < esp(w) + ca. We use (2.2) only
for the sake of convenience.

Example 2.3. The two basic examples of such weight functions are p(z) =
|z|1P(p > O) and p(z) = |Sz| +1og(1 +|2|?) corresponding to the space A,(C™) of
all entire functions of order< p and finite type and the space g (R™) of Fourier
transforms of distributions with compact support in R™.

Let f # 0 be a holomorphic function on an open connected neighborhood

of ¢ € C™. Then a series f(z) = . v

7= Pi{z — () converges uniformly on some

neighborhood of ¢ and represents f on this neighborhood. Here P; is a homoge-
neous polynomial of degree j and P, # 0. The nonnegative integer v, uniquely
determined by f and (, is called the zero multiplicity, or zero divisor of f at (,
denoted by divs(().

Let V = {((r,mi)} be a multiplicity variety; that is, a discrete set {(x} C
C™ with [(x| = oo together with a sequence {my} of positive integers. Associ-

ated to V, there is a unique closed ideal in A(C"™),
J=J(V):={f € A(C™) : div;((x) > my, Vk}.

Two entire functions g, h in C™ can be identified modulo J if and only

oMg(¢k)  oMIA(Ck)
01 0z

0 <] <mg. k€N,



here and throughout the paper, we use I to denote a muti-index; that is, I =
(i1,---,in) € (ZT)". The quotient space A(C")/J can be identified to the
space A(V) of all sequences {ak. 1 }ren 0<|Ij<m, ©f complex numbers, which can

be described as “analytic functions ” on V. The map

Ml (e
p:p(f)= {_”é‘é(lc—k)'}kEN,OSII'<mk

is the natural restriction map from A(C™) into A(V).

Definition 2.4. Let V = {((x, m«)} be a multiplicity variety on C™. Then

we define
my—1
Ap(V)={a={axs} €A(V):3A,B>0, > lars| < Aexp(Bp((r)) k € N}
’ I1=0

It is easy to see that p(A,(C™) C A,(V) (cf. Lemma 3.3), but in general,
the space A,(V) is too large. The interpolation problem with multiplicity stated
in the introduction is simply to determine when p is surjective from A,(C") to
A,(V). That is, under what conditions, is it true that for any multi-indexed
sequence {ax ;} € A,(C™) there exists an entire function f € A,(C™) such that
frr = aps for any k € N and 0 < |I| < my; ie., f has a described finite
collection of Taylor coefficients. When my, = 1 for all &k, then fi ; = ax ; simply
means that f((,) = ai, where {a} is a sequence satisfying that |ax| < AeBr(Ck)
for some constants 4,B > 0. When n = 1, then fi; = ai becomes that
Lml(!#) = ag; for Kk € N and 0 <1 < my — 1, where {ar.} is a sequence
satisfying that Zl";‘b_l lak.| < AePPLer) for some constants A, B > 0.

Definition 2.5. A multiplicity variety V = {({x,my)} is an interpolating
variety for A,(C™) if the restriction map p is surjective from A,(C™) to A,(V).

Let V = {((x,mz)} be a multiplicity variety. We use V' C F~1(0), where

F = (F\,F;,---,F,), to denote that each F; vanishes at ( with multiplicity



at least my; i.e., divs(Cy) > myi ,Vk. Sometimes, by abuse of language, we also
refer to “a point ” in a multiplicity variety {((x,mx)} to mean the first entry (.
Given €,C > 0, we define S(F; ¢, C) by (1.2), which can be thought as a “tube”
of the variety V.

We shall prove the following theorem:

Theorem 2.6. Let V = {((x,mi)} be a multiplicity varety in C™ and
m > n a positive integer. Then V 1s an intérpolating variety for Ap(C™) if
and only if there ezist m functions f1, fa, -+, fm 1 Ap(C™) and two constants
¢,C > 0 such that V. C F~Y(0), where F = (f1, f2,- -+, fm) , and each connected
component of S(F;e,C) := {z € C™: |F(z)| < ee"“P3)} contains at most one
point iV and such a component has diameter at most one.

As an application of the above theorem, we have the following corollaries,
the proof of which need both the necessary and sufficient conditions in Theorem
2.6. Corollary 2.7 gives an affirmative answer to a question in [BT3], when the
variety under consideration is a multiplicity variety. The case when my =1 for
all k in the following corollaries appeared in [BL1].

Corollary 2.7. Let V = {(Cx,mi)} be an interpolating variety for A,(C™).
Then V is also an interpolating variety for A,(C™) for any weight ¢ > p.

Corollary 2.8. Letp; : C = [0,00) be weights in C and
Vi = {(¢ s myk) 132, be an interpolating variety forp; (1 <j<n). Letmy =
mini<j<n{mji}, Gk = (CknCakr s Cnk), and p(2) = pi(21) + -+ + Pnl2n)
for z = (21,22, ,2n). Then V = {((x,mg)} ts an interpolating variety for

Ap(C™).

§3. Proofs of the Results. In the following, we shall use A, B, C, € to denote

positive constants, the actual values of which may vary from one occurrence to



the next.
To prove the results, we need the following lemmas.
Lemma 3.1. Let V = {(Cs,mz)} be an interpolating variety for Ap(C™).

Then given M > 0 there exist two constants | > 0 and € > 0 such that

Apa(V) D {a = {ak r}ren,n<m, * lal] <€},

where ||a|| = supkeN{ZrIl"‘:—Ol lag.r]le”MP)} and Ap (V) =

= {as = {fe.1teen j11<ms * f € A(C™),]f(2)] < 1e'P®) 2 e C™and ||ag|| < 1}.

Proof. Let A = {a = {ak1}ren,|I|<m: : |lo]| < 1}. Then it is easy to check

that A is complete under the metric induced by the norm ||a]|. Let
Ay (C™) = {f € A(C™) : |f(2)| < 1Pz e C™}.
Then we have that

Ap (V) = {as = {fertrenri<mi - f € Apa(C™) and  |lag|| < 1}

Because V is an interpolating variety for A,(C™), for any sequence a = {ak 1} €
A, there exists a f € A, ;(C") for some | such that fr; = ayx; for k € N and
|I| < mg. That is, a € A, (V). This shows that A = U2 Ay (V).

One can check that each A4, (V) is a closed subset of A. In fact, if f;
is a sequence in A, ;(C™") such that (f;)rx; = @ € A as j — co, then by the
property of the weight p and using Montel’s theorem (see e.g. [G]) we know
that {f;} is a normal family. By passing to a subsequence, we can assume that
f;j = f normally, where f is the limit function. By the Weierstrass theorem,

f € Ap.(C™) and moreover {frr} = a. It follows that a € Ap (V) and thus



that A,;(V) is closed. Now by the Baire-category theorem we know that for

some I, A, (V) has a non-empty interior. Therefore, there exists a € > 0 such

that A, (V) D {a = {ak 1 }tren 1j<m, : |la]| <€} O

Lemma 3.2. Let V = {((k, me)} be an interpolating variety for Ay(C™).
Then there exist two constants | > 0 and € > 0 and a sequence { fr} of entire

functions such that
|fe(z)] <P 2€C™ and keN (3.1)

and

- (Y
= 0,Y), 1] < m; — 1, except that =e (3.2
(fe)s1 g, (| < my except ina (mp — 1)1 aZInk—'l € (3.2)

Proof. It follows from Lemma 3.1. In fact, taking M = 1 in Lemma 3.1,
we then obtain two constants [ > 0 and ¢ > 0 such that the space A, ;(V)
contains the space S := {a = {ag 1 }ren,1j<m,  |lal] < €} (see Lemma 3.1 for
the notations). For each fixed k, consider the sequence ap = {ak 1 }reN,|I|<m,
satisfying that a,; ; = 0 for all j and 0 < |I| < m; except that ay s, = €, where
I, = (my—1,0,---,0) € (Z*)™. Then it is clear that ax € S. Hence there exists
entire functions fi such that (3.1) holds and that (fi); s = a;r for all j and

0 <|I| < mj. That is (3.2) holds. O

Lemma 3.3 [BT1]. If f € A,(C™), say |f(z)| < AePPZ) for z € C™ | then
there exist A', B > 0 depending only on A, B and the weight p, but not on f,

such that

o0
1 olf(2) (= n
Z I | < AP zeCm
[[|=0



Lemma 3.4 (Schwarz, [G]). If f is holomorphic in an open neighborhood
of a closed ball B(C,r) in C™ centered at { and with radius v, |f(2)] < M
for = € B((,r), and %L(C) = 0 whenever |I| < m for some m € N, then

[f(2)] < Mr=™|z = (™ for z € B(G,r) .

If V = {(Cx,mx)} is an interpolating variety for A,(C"), then V has the
following three properties. In fact, we have the following result:

Lemma 3.5. Let V = {((x,mi)} be a multiplicity variety in C™ and { fx}
a sequence of entire functions satisfying (3.1) and (38.2) for some l,e > 0. Then

(1) mp < Ap(Ci) + B for some A, B > 0;

(i) i = inf2e{|Ck — (|} > ee”CPR) Yk, for some constants €,C > 0;
and

(i51) S po e~ MP) < oo for some M > 0.

Proof. For each fixed k, we have by the Cauchy Theorem,

1 o™~ (Cr) 1 n/ fr(z)dzy Ndzg -+ ANdzy,
(

(me — 1)1 @2t - (§W—i 21— Cip)™ (22 — Ck) o (Zn = Cnk)
where Cx = (C1.kC2.k>*» Cnk), and the integral is taken over the distinguished
boundary Py of the polydisc {z = (21, *,2n) € C" : |z; — (| < e,) =
1,2,---,n}. Therefore by (3.2)

A A
2 < Bp({x)
e max{|f(2)[} < e

e <

and so that e™ < AePPC) or my < A+ Bp((y) for some constants A, B > 0
independent of k. That is, (i) holds.
For each k, there exists a j such that dy = |(x — (j| . We may assume

that m; < my (otherwise, exchange the positions of k£ and j and do obvious

modification in the following argument). Set Fi(z) = (m»l~—1)! a'"a —mljlc_ifz). Then
by (3.2) we know that Fi(Cyx) = 0, but Fi((;) = & 1_1)] ama’.nijfj_(fj) = e By
J * 21

10



(3.1) and using Lemma 3.3, we know that |Fr(z)] < AeBrlCk) for |z — (] < 1,
where A, B > 0 are some constants independent of k. Next by Lemma 3.4,
we have that |Fj(2)] < A4eBPCO|z — (| for |z — (x| < 1. In particular, if
IC; — (k| < 1, we then have that |F((j)| < AeBPC) | — (x| and thus that
¢ < AePPllld, . that is, dp > ee—CPCk) for some constants €,C > 0. This
inequality is obviously true if |(;—(g| > 1. Thus, (ii) follows. The last conclusion
follows from (ii) and the following result in [BL1]: Let {2z} be a discrete set
in C™ with & := inf ;2 {|zx — 2|} > ee~P(&x) Yk for some constants €,C' > 0,
then there exists a M > 0 such that Y .-, e~ Mp(Ck) < oo, This completes the

proof. [J

Proof of Theorem 2.6. We first prove the necessity. Let

Ap(C™) = {f € 4,(C™) : |f(2)] < 179,z € C7)

and
me—1
Ap (V) = {{fr1treNri<m, : [ € Ap,z(Cn),SUP{ > | fele™ PO} <1,
se
{7]=0

where M > 0 is a constant. By Lemma 3.1, there exists a positive integer [ and
a € such that

my—1

Ap (V) D {{ak 1t ken jrj<ms Sup{ Z lag.r]le”MPE)} < ¢}
€
|I1=0

Therefore, for each 1 < j < n we can obtain sequences of entire functions {g; «}

and {h;x} with g; s, hjx € Ap(C™) for any k € N and 1 < j <n, such that

M lgjulle) _ mrico) (33

(956)i0 =0, Vi, |I| <m; — 1 except that = €pe

11



and

(ﬂ)mk—l—[ingi]h~
(hjx)ir =0, ¥i,|I| <m;—1 except that - (_f_"ﬁ](Ck) = eoeMPiS)
Oz, KT

J
(3.4)
where [z] denotes the biggest integer that is less than or equal to z. We define,

for 1 < j < n, the following functions

= (5= Gr)gs, k( Yhj (2)e™ ML), (3.5)

k=1
where z = (21, -+, 2n) and (x = ((1ks -+ (n.k). 16 is clear that divy, () = my
and so that V C F~1(0), where F = (f1,"-+, fa). We claim that f; € A,(C")
for each 1 < j < n. In fact, since g;, hjr € Api(C™) for any k € N, we have
that for z € C7,

|95 1(2)] <1 Ry k(2)] < 1P,

Also, by the property (2.1) of the weight function p, we have that
|2 — Gl < A;BP ) 4+ AeBP(S)
for some constants A, B > 0. Therefore, we deduce that
(z; — Cj,lc)Qj,k(z)hj,k(z)e_QMp(Ck) < AeBr(2) o(C=2M)p((x)

for some constants A, B,C > 0. By Lemma 3.2 and Lemma 3.5 (iii), taking
a M sufficiently large, we see that the series (3.5) is uniformly convergent in
compact sets of C™, and moreover |f;(z)| < AeBPz) z € C™ for some constants
A,B > 0; that is , f; € A,(C").

Next we show that there are positive constants €, C' such that the “tube”
S(F;e,C) satisfies the conclusion in the theorem. To this end, let & > 0 and

let u = (u1,---.u,) be a unit vector in C™. Then there exists a j (1 < j < n)

12

e



such that u; > Jﬁ For this fixed j, consider the Taylor expansion of fi(z) at
(x. Noticing that

)< 2

+m +1 < 2my,

we can verify that, in view of (3.5), (3.3) and (3.4),

52 == Ge™+ Y Crlz =),
[T1>2ms —[ 5~

where C;’s are complex numbers. Note that thereis a “gap” between the powers
of the first and other terms in the above expansion, from which we have that,
for w € C,

Fj(w) := f;(Ck +uw) = e%u}”"wm“ + nszm“”[%&] + Z bjw?, (3.6)
J>2m —[ 5]

where 7y, and b; are complex numbers. By Lemma 3.5 (i), we deduce that

uTe > (_I_)mk > ce—CP(Ck) (3.7)

vn

for some constants ¢,C > 0. Let d, = min{1,dist (O,Fj—l(()) \ {0})} and set
Gj(w) = %ﬁ—) Then |G;(w)| < AePP) for some constants A,B > 0 on
lw| = 1 and thus in |w] < 1 by the maximum modulus theorem. Also let
H;(w) = Gj(w) — G;(0). Then by (3.6), we see that H;(w) has a zero at w =0
of order at least my — [B+]. Note that |H;(w)| < AePP for some constants

A,B > 0 on |w| < 1. We have , by Lemma 3.4, that
|Hj(w)| < AeBC) =154

on |w| < 1. Thus, if a # 0 is a zero of Fj(w) in |w| < 1, then G;(a) = 0 and
thus that Hj;(a) = G;(0) = e%’u;”"‘ > e2ee~CP6) by (3.6) and (3.7), from which
it follows that

mk

Ialmk-—[ o > IGj(O)lA_le—BP(CI‘) > ce—CpCx)

13



my
[=*] > ¢~ CPC) for some

for some constants €, C > 0. We thus have that dy *~

constants ¢, C > 0. Now by virtue of the fact that my — [55] > %*, we see that

Mk [k
dg? > di (=~ > ee—CP(Ck)

and so that d7'* > ee~CPs) for some constants €, C > 0, or

d, > emre 7P = o, (3.8)
Note that G;(w) has no zero in |w| < 2di by the construction of d,. (It may
be worth to mention here the difference between d,, and 7y, := inf ;4 {|Cx — (5]}
While G; has no zero in |w| < dy, G; might have many zeros in |w| < n5. Thus,
the role ;)f d, can not be played by 7n,.) We can now apply the Carathéodory
theorem (see e.g. [Lv]) to G;(w) in |w| < 2dj, to deduce that for |w| < dy

G(w) 2dy, Gj(w)
> -
| G;(0) 2 2dg — dg 10g('g113§k{| G;(0) .

log

or |G;(w)| > ee=CP() for some constants e, C > 0. In particular, for |w| = di,

|[Fj(w)] = |w™ Gj(w)]

> (_;_)mk{em_lk'e_ﬁqu(ck)}mk ce—CP(Ck) > 6e—CP(Ck),

in view of (3.8) and the fact that my < Ap((x)+ B for some A, B > 0 by Lemma
3.5 (1).

So far we have proved that for a given unit vector v € C", there exists
aj (1 <j < n)such that |f;(Ce + uw)| > ee=“PC) on |w| = di, where
the constants ¢, C are independent of u and k. Therefore, for z € C™ with
|z — k| = di, we always have that |F(z)| = (Z?:I [fj(z)[z)% > ee~CPO) Now
consider the neighborhood Uy = {z € C™ : |z — (x| < di} of (x. By the

above result, we know that |F(z)| > ee~“P(%) on 9Uy. Recall that S(F;¢,C) =

14



{z € C": |F(2)] < ee"CPl&)}. Thus the connected component Vy of S(F;¢,C)
containing (j, is clearly contained in Ug. By the construction of dj, we see that
Ui, and thus Vi, has diameter less than 1 and does not contain other points of
V. (If m > n, we can easily add m — n entire functions fa+1," -+, fm so that
f1, fa, -+, fm satisfy the conclusion of the theorem. ) This completes the proof
of the necessity.

To prove the sufficiency, let Vj be the connected component of S(F;e€, C)
containing (. Suppose that {ax r} C A,(V) be a given multi-indexed séquence
with E[T}er—ol lak.r] < AePPY) for some constants A, B > 0. We define an
analytic function X : S(F;¢,C) — C by

“AMz) = { Zlr?lk=_01 ar1(z — )t if 2 € Vi
0, if z€ S(F;e,C)\ Ugen Vi

Then it is clear that A\p; = ags for £ € N and 0 < |[I| < mp — 1. Let
A,(S(F;e,C) be the space of analytic functions g on S(F;¢, C) satisfying that
l9(z)] < AePP?) on S(F;¢ C) for some A, B > 0. Then A € A,(S(F;¢,C)),
since |2 — (k] < 1 on Vi by the assumption. Now the sufficiency follows from
the following theorem ([BT1]): If A € A,(S(F;¢,C)), then there exist an entire
function f € A,(C™), and €1, Cy > 0 such that f(z)—A(z) = 2271, f;(2)g;(z) on
S(F;e,C), where g; € A,(S(F;€1,Cr). Applying this theorem to our function A,
we obtain such a function f € A,(C™). Then by checking the Taylor expansion
of f — X, we easily see that fi ;= Ay = ap s for k€ N and 0 < |[I| < my — 1.

This shows that V is an interpolating variety for A,(C™). O

Proof of Corollary 2.7. Since V is an interpolating variety for A,(C™), by
the necessary condition of Theorem 2.6, there exist m functions fisfey oy fm
in A,(C™) and thus in 4,(C™), and two positive constants €, C’ > 0 such that

V c F~Y0), where F = (f1, f2, -+, fm) , and each connected component of
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S(F;e,C):={2€ C":|F(2)| < ee~CP(2)} contains at most one point in V and
such a component has diameter at most one. Let Uy and Vi be the component
of S(F;¢,C) and the component of 51(F;¢, C) = {z € C": |F(z)| < ee~Calz)}
that contain (i, respectively. Then it is obvious that Vi C Ui since ¢ > p.
Hence V;, does not contain other points in V' and its diameter is at most one.

Now by the sufficient condition, we know that V' is an interpolating variety of

A (C™). O

Proof of Corollary 2.8. Since V; = {({;.x, M)}z, is an interpolating variety
for Ap,(C) (1 <j <n), by the necessary condition of Theorem 2.6, there exist
¢,C > 0 ‘and functions F; in A,(C) such that V; C Fj_l(O) and the component
U’ of S(Fj;e,C) = {z€ C:|F;(z)| < ee~CP(2)} contains at most one point in
V; and such a component has diameter at most one. By taking smaller € and
larger C we can shrink the “tubes” S(Fj;¢,C) so that the diameter of U,z is
at most —=. Set F(2) = (Fi(z1), Fa(22), -, Fn(zs)), where z = (21,---,2n) €
C™. Then V C F~}0) and F;(z;) € Ap(C™). Let Uy be the component of
S(F;e,C) == {z € C": (|Fi(z)P +--- + |Fo(20)|?)7 < ee=CP(3)}. Then it is
clear that z € Uy implies that z; € Ug, from which it follows that U can not
contain other points in V. Moreover, if z € Uy then |z — (x| = (|21 — Gxl® +
st |z — Cn,kIQ)% < 1 in view of the fact that the diameter of U,Z is at most ﬁ
This shows that the diameter of Uy is at most 1. Now by the sufficient condition

of Theorem 2.6, we know that V is an interpolating variety for Ap(C”). O
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