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ABSTRACT

In this paper we prove Riesz type theorems on uniqueness sets for regular functions in the Dirichlet
class and for meromorphic functions in the spherical Dirichlet class.

1. Introduction

In this paper we shall study boundary values for different classes of harmonic,
regular and meromorphic functions in the unit disc A. We start by introducing the
classes of functions that we shall be studying.

DerINITION A.  Let fz) be a regular function in the unit disc. If

[[ rerad<s
A
we say that f{z) is in the Dirichlet class D.

DerFiNITION B, Let f{z) be a regular non-constant function in the unit disc. Define

n(w) = n(w, A, f)

to be the number of roots of the equation f{z) = w in A and write

1 (% )
PR) = p(RAf) = o f n(Re™) db.

Then if there exists a positive number p such that,

1 'R
—f f PO dxdy = f () do* < pR?
{z:1fR)|<R}

n 0
for all positive R, we say that the function fz) is an areally mean p-valent function.
Let us denote by AMP the class of regular areally mean p-valent functions in the

unit disc. It is not difficult to see that AMP is not a subset of D and D is not a subset
of AMP.
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In this work we shall use the concepts of non-tangential or angular limits and
capacity of a set; for their definitions we refer the reader to {3].

The original Fatou theorem states that any bounded harmonic function in the unit
disc has radial limits for almost every €* in 0A, and the original M. and F. Riesz
theorem states that if a bounded analytic function in the unit disc has the same radial
limit in a set of positive Lebesgue measure in A, then the function is constant.

Beurling in [1] realized that for some classes of functions the right tool to measure
the uniqueness sets is not the Lebesgue measure, but the capacity. He proved the
Fatou theorem for the class of regular univalent functions in the unit disc with
Lebesgue measure replaced by capacity.

Now we proceed to describe the work done in this paper. In Section 2 we study
the following problem. Assume that f{z) is in D, such that lim,  »f(z) = « non-
tangentially for all ¢" in E a subset of dA. Carleson in [2] proved that some condition
on the limiting value o must be required if we want E to be a set of uniqueness. He
constructed a non-constant function in D having the same limiting value in a subset
E of 0A of positive capacity.

What condition must we impose on the limiting value so that if the capacity of E
is positive then f{z) is a constant function?

We are going to need the following preliminaries. Let o be a complex number in
the plane; we write A () = {z:|f(z) — | < p}, where f(z) is in the class D. Consider the
following area integral:

|| e -
A @
then we have the following definition.
DeriNiTiON C. We say that « is an ordinary value of f{z) if,

4,(2)

lim sup —5—~ < 0.
p—0

Tsuji in [9] proved the following result.

THEOREM. Suppose that f(z) is in the class D and that lim,_ «f(z) = « non-
tangentially whenever e” is in E, where E is a subset of 0A. If o is an ordinary value
of fz) and E has positive capacity, then f(z) is a constant function.

We prove the following theorem, which extends Tsuji’s theorem.

THEOREM 1. Assume that f(2) is in the class D, and suppose that lim, _ 4 f(z) = a
non-tangentially for all e in E a subset of 0A. If

A () = o(pzlog B]) asp—0

and E has positive capacity, then f(z) is constant.

It will be interesting to know if our condition on the limiting value a is sharp.
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Let u(z) be a harmonic function in the unit disc. Consider the level curves of u(z),
denoted by /(c) ={zeQ:u(z) = ¢} for —o0 < ¢ < o0, and let Oc) = fl(c) |*du| for
— 0 < ¢ < o0, where *du is the differential of the harmonic conjugate function of u(z),
with the agreement that @(c) = 0 if /(c) = (¥. After these preliminaries we have the
following definition.

DErINITION E.  Let u(z) be a harmonic function in the unit disc. Suppose that
there exists aeu(Q) such that
® de
o=

for every b greater than g, and

lim f e _

b—wo a®(c)
Under these conditions we say that the function u(z) is a slowly increasing unbounded
harmonic function, and we denote this class of functions by .

Proposition 1 in Section 3 proves that any function in the class S has non-
tangential boundary limits almost everywhere in dA. Then we prove the following
theorem.

THEOREM 2.  There exists a function in the class S of maximum growth which does
not have non-tangential limits in a set of positive capacity in 0A.

The definition of a function in the class S of maximum growth can be found in
Jenkins and Oikawa [6, p. 58]. This result shows that our Proposition 1 is in some
sense best possible.

Let us remark here that if fis in the class AMP, zero free and unbounded then
u = log|f] belongs to the class S; see Hayman [4]. It is also known [3] that if fis in
AMP then it has non-tangential boundary limits at every point in A except possibly
in a subset E of 0A of capacity zero. Thus for the class of functions

Saup = {u:u(z) = log|f(z)|,fe AMP, zero free and unbounded},

which is a subset of S, a stronger Fatou theorem holds.

2

THEOREM 1. Assume that f(z) is in the class D, and suppose that lim, , »f(z) = o
non-tangentially for all € in E a subset of 0A. If

A o) = o(p2 log BD asp->0

and E has positive capacity, then f(z) is constant.

Proof. For 0<d <1, let C;={z:|z| = 6}. By Q; we mean the open region
bounded by the two tangents from z =1 to C; and by the more distant arc of
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C, between the points of contact. Let Q,(f) be the domain Q; rotated through an
angle g around z = 0, and consider Q; = |J, ., Q,(6). We choose 0 <1, < 1 and let
={z:|z| < r,}; then the domain Q D, U{Q NlelD, ]’} is simply connected,
and forany 0 <d <1, 0Q;is a quaswonformal curve.
Consider now the conformal mapping ¢;: Qs+~ A with ¢,0) = 0. Then for the
map :
B5' = st A,

d[$s(A)] is quasiconformal.
We now take the map

LA TYE

defined on the exterior of the unit disc. It has a Taylor-series expansion of the form
’ ’ bl
Pi(z) = a(;z+b0+—z~+... .

If the Taylor-series expansion of the function Bs(2) is Ps(2) = a;z+..., it is not
difficult to show that a; = 1/a;. Since we can choose a; > 0, it follows that a; = 1/a;.
Thus the function a;¢j(z) belongs to X (the class of normalized univalent functions
in the exterior of the unit disc). By [8, Theorem 9.14, p. 292], since J[a; ¢;(0A)] is
quasiconformal it follows that a; ¢3(z) € X[k(d)] for some 0 < k() < 1. Where we say
that f{z) e Z[k(9)] if f(z) is in the class ¥ and has a quasiconformal extension to the
complex plane.

We shall need the following result which can be found in [10].

THEOREM. Ler geX(k), 0 <k < 1. If A < 0A is compact then

cap[g(4)] < [cap (A)]'™*

Without loss of generality we can assume that E is compact. Applying the above
result to A = ¢s(E) and g(z) = a; dx(z) e X[k(d)] we have that

ascap (E) = cap (a, E) = capa; $;[¢s(£)]] < [cap [$(E)I"*

Using Schwarz’s lemma it is not difficult to show that a; > }r,. Therefore

2rocap (E) < [cap [$(E))"™

Hence if we show that for some 6,0 < 6 < 1,cap [¢s(E)] = 0 we will be done. It is well
known [5] that this is equivalent to showing that

d[6,(E), C,] = do [E. $;°(C, )] = 0

where d,(E,, E,) is the extremal length in A between the sets E, and E,. By the
comparison principle for extremal lengths and Schwarz’s lemma applied to ¢; we
obtain that dq, (E, CTO) < do [E, ¢;1(C70)]. Thus, we need to show that for some § > 0,
do(E,C, )=
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Without loss of generality we can assume that o = 0. Now we start estimating

da(E,C,):
{inffp(z)Ia’zl}2
do(E,C, ) = sup

f J p¥(z) dx dy

where p(z) is a non-negative Borel measurable function in ©, and y eI are rectifiable

arcs in ), joining a point of E with a point in C, . By our construction of Q; any

yeI approaches a point of E non-tangentially. Thus Sf(y) joins 0 with a point in f(C -
Since by hypothesis

A4,0) =0 (p210g BD asp—0,
for any ¢ > 0 there exists p,(¢) = p, such that

A4,(0) < ep®log [})] 2.1

for any p < p,. It is not difficult to show that if A,0) = o(p®log[1/p]) as p — 0, then
for each j, < 1 there exists a constant C, which only depends on j, such that

4,0 < Cyptiog 3 22

for all p < j,.

Let us choose g, = e ' and take a sequence p, = e, n = 1, 2, ... going to zero. For
each f small we are going to consider the following non-negative Borel measurable
function on ;. We define

wn _ JI@)) ifze[{z: | f2)] < e n Q)
pH(2) =

0 otherwise.

Let us call AY ={z:p,; <[fl2)l <p,},n=1,2,.... Then,

ffwmwwsi”jwwma@

fﬁWﬂmvww@

i ] o

fzwf|ﬂmw@,

=1 n+1

//\

since A} < A, (0) = {z:|f(z)] < p,} for any n. Then

JJ p*i(2) dx dy <ﬂ2 o EﬁffA (@) dxdy.
©

nl n+1
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—n

For ¢ fixed, there exists an integer n,(¢) = n, such that e " < p,. Hence

j f () dxdy < Z L j f Jreras

pn+1

ey L f J F P dxdy.
A (0)

n= nopn+1

Using inequalities (2.1) and (2.2) in the above sums we obtain

g 1
[ r@raay<p'S cumriiog] ]
Qs n

n=1 pn+1

1 1
+p° Z & ~5=55Pn log{p ]

n=r, n+1

-1
— C() ﬁzez "02: e—zﬁ(n+1)n

n=1

+ef?e? Y e ¥ tip =T+11.

n=ng

Let us examine II. Now

[ee] o0 C
Il = gf?e? ) ey g eﬂzezClj e #rxdx < gf? 23?2 = ge*C,,
0

n=n0

where C, is a universal constant. Thus we obtain that

JJ P2 dxdy < C, 't Z e ¥ Vp 4 ge?C,. (2.3)

n=1

Now we proceed to estimate f ,p*(2)|dz| from below for any yel:

f rEE>Y [ e

n=1 ynA:

-y arenred

n~0JynAk

o0

>BY | sl

n=1JynAkFn+1

[ve)

ﬁzpn pn+1

n=1 pn-_fﬂl

—n—l

= :B Z —(A-H(ntl)

n=1 €

=9} l_e—l

=5E1;7r—75(;n7

17 JLM 45
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It is not difficult to show that

e™¥>C,| efdx= g,
3
el B

0

where C, is a universal constant. Thus,
l—e!
f @l > ¢, U0, (24)
7

Therefore by (2.3) and (2.4),

{infyf p*(2) |dz|}2
dﬂ{;(E’ Cro) > a
U p*¥(z) dx dy
J[1—e '
o]
=

no—l
Cye’f* ), e Dyt e%C,

n=1

letting f — 0 we get that,

1—e 172
do (E,C. ) 2 ————.
o (£ C) ee*C,

Letting ¢ —» 0 we deduce that do (E, C,) = o, and the theorem is proved.

3

PROPOSITION 1. Any function u(z) in the class S has non-tangential finite limits for
almost every € in JA.

Proof. Since u(z)e S we have that

b
,u(a,b)zji< 0

. 0(0)
for finite b and lim, , , u(a, b) = oo. Thus it is clear that for ¢ big enough there exists
a subset of Re{w} = ¢ which is omitted by the function flz) = wu(z)+ i * u(z), where
*1(z) is the harmonic conjugate function of u(z), and this subset has positive measure
and therefore positive capacity. A standard result in Nevanlinna theory tells that the
function f{z) is in the Nevanlinna class, and functions in the Nevanlinna class have
non-tangential limits almost everywhere.

It remains to show that these non-tangential limits are finite almost everywhere.
Suppose to the contrary that f{z) has non-tangential limit equal to infinity in a set of
positive measure; then by [3, Theorem 2.3] f{z) is a constant function equal to infinity
contrary to our assumptions. This concludes the proof of the proposition.

Now we are going to construct a slowly increasing unbounded harmonic function
with maximum growth in one direction, which does not have non-tangential limits in
a set of positive capacity in JA.
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THEOREM 2. There exists a function in the class S of maximum growth which does
not have non-tangential limits in a set of positive capacity in 0A.

Proof. We quote the following theorem of [7].

THEOREM A. There exists a function, analytic and umvalent in the unit disc A, and
a set E < 8A of positive capacity such that lim, _ (1 —P)E|f(re'%)| = oo whenever €
belongs to E.

n [7] the authors construct f”(z) explicitly:

1@ =5 [ S,

€

where u(1), 0 < < 1, is the monotone non-decreasing singular function associated to
a Cantor set E of positive capacity, and they extend u(7) to be 0 if —n << 0 and
1if 1 < ¢ < #. From the explicit formula of f'(z) it follows that its real part is positive.
If we modify u(7) to be fi(1) = u(t+Lr), we have that fi(¢) = 0 for —in < ¢ < {n. Then

the function
- 1 3n/2 “+Z
Fer=5 | S
) ape—

has an analytic extension at the point z = 1, and f7(z) has the same properties as f'(z).
In particular its real part is positive and f{z) satisfies Theorem A. The function
logf"(z) is well defined and adding a small positive constant, if necessary, we can
suppose that f'(1) # 0. The function sin {log 7'(2)} is bounded since Re {f7(z)} > 0, and
its derivative is

@

f@

which has an analytic extension at the point z = 1 since f'(z) has.
Suppose that

g(2) = cos {logf'(2)}%

ra_
ZONS
Let N, (a) {w:|w—w,| <&} in the w-plane, then g7'[N,, (e)] is a neighbourhood

of z=1 in the z- -plane. Therefore there exists a sector S in " A about z = 1 such that
S.=Sn{re) <lzl <1} c g‘l[Nwo(e)] for some r,(e). Take the function

cos {log /" (1)}

h(z) = log[ ! ]+sm{logf(z)}+(—l— Wy Z.

We want to show that its real part u(z) = Re{h(z)} € S has maximum growth in the
real direction. We have that

h(z) = [ ! ]+cos{logf(z)}];((w))—(l+w0);
then for ze S,
1 /(@ 1
‘[1 ]+cos{logf(z)}f~ )—(1+w(,) <ll .

17-2
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Let us point out that the function

o[

Is an areally mean {-valent function. By [6, p. 39] we have the following inequality :

[u(r) —ao]* < Dsc n Qia,, wimlU) /‘se[aoa u(r)], (3.

where Dglu] stands for the Dirichlet integral of wu(z) over S and Qlay, u,] =
{z:a, < u(z) < u(r)}. We now proceed to estimate Dy 1 aray wnltl:

Dy natay, ur[ul = Jf |h'(2)|* dx dy
S, N Qlay, u(n]

since on S,,|A'(z)] < |1/(1—2z)| we have that

DSSHQ(aO,u(r)][u] - ff
Scnﬂ[an,u(r)]

It is not difficult to see that since sin {log f*(z)} is bounded,

1

11—z

2
dxdy.

Qlag, u(r)] = Qdy, u(r) +¢,]
for some constants d,, ¢, independent of r, where

Qldy, u(r)+c,) = {z: a, < log

1
1—_21 < u(r)+C0}.

Thus
2

dxdy

DSﬁﬂﬁ[a“,u(r)][u] < ff ~ 1 —z
S, NQUd,, u(r)+c,l

1
S 1
Ora,, wn+el 1 1

Since k(z) is an areally mean }-valent function, by [6, (3)],

2
dxdy.
z

Dy, 1 qtag, uernlt] < wlulr) +cy— ] + 1.
Therefore substituting in (3.1) we have that
[u(r) — aJ* < mfu(r) + cg— a] s [ag, w(r)] + C.
Dividing both sides by [u(r) —a,] we obtain that

n(a,—d,+c,) C

[u(r) — a,] < nﬂsﬁ[aov u(r)] + [u(r) — ao] ,usﬁ[ao: u(r))+ Wa—o].
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Now we have that by construction

1
u(r) = IOgTjr_k’
and that by [6, (19)]

1 1
, < -log—+K’
/‘sﬁ[ao u(r)] = Ogl—r+

for some universal constant K’. Thus

(@, —d, +¢)

) —ag Fsldew <K

and therefore

%u(r) —-K< /‘sg[ao’ u(r)]

for some constant K independent of r, and r large enough. Since

u(r) = log [i%} +Re {sin {log f(r)}} +Re{(—1—w)} r

and the second and third terms in this expression are bounded, we have that

1 1
Ms [, u(r)] = ;log:—{— o(1)

as r — 1. Since u(z) is bounded in A\S,, there exists a number b, such that [u(z)| < b,
for all ze A\ S,. Therefore ®,(c) = © Sc(c) for all ¢ > b,. Thus for u(r) > b, we have that

talag, u(r)] = unay, by) + pis [by, u(r)]
1 1
> — — .
> nlog I —r+0(1)
Hence

. 1 1
im| o 17) L tog T

r—1

80 u(z) attains maximum growth in the direction of the positive real axis.
We have to show now that the function u(z) does not have non-tangential limits
in a set of positive logarithmic capacity in JA. Let us take as our function

u(z) = log

T‘i—z b +cosh [argf’(z)] sin[log |f~/(z)” +Re{(—1—wy)z},

since cosh[arg/’(z)] is greater than or equal to one, and lim,_, |f'(re¥)] » oo
whenever ¢ ¢ E. We have that the limit

lim [cosh [arg f*(re'®)] sin [log | f(re']]

ro1

does not exist whenever e€ E. Thus the lim, ., u(re’?) does not exist whenever
e’ e E. Since E has positive capacity we have proved the theorem.
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