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We prove that if w:[R" — R is a monotone function in the weighted Sobolev space
Whe(B"; w) with n—1 <p <n, and w a weight in the Muckenhoupt class 4, for
1 < g < p/(n—1), then u has to be constant. This constitutes a Liouville type theorem
for this class of functions. We will also prove a quasi-uniform continuity result for the
same class of functions.
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1. INTRODUCTION

Let us start by recalling the definition of monotone functions (in this
paper we consider only continuous monotone functions) and of
Muckenhoupt 4, weights.

Definition 1.1 Let @ C R” be an open set. A continuous function
u: 2 — R is monotone, in the sense of Lebesgue, if

max u(x) = max u(x
ax () = max ()
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and
min u(x) = min u(x
in () = min ()

hold whenever D is a domain with compact closure D C €.

Definition 1.2 Let ¢ >1 and we Ll (R"). We say that we Aq,
if there exists a constant C such that

g—1
sup <][Bw(y) dy> (][Bw(y)’/“—q) dy) <C

where the supremum is taken over all balls B c R".

The Sobolev space W!?(B"; w) is defined in [2, Chapter 1]. It con-
sists of functions u : B” — R” that have first distributional derivatives
Vu such that

/ ([u())” + |Vu(x)|P) w(x) dx < co.
B

The weighted p-capacity we will be using throughout this paper is the
relative first order variational (p, w)-capacity [2, Chapter 2].

Our first result, already hinted in [3], establishes that a monotone
function in the weighted Sobolev space W'?(B";w) with
n—1<p=<n,and w a weight in the Muckenhoupt class A, for 1 <
g < p/(n —1) is quasi-uniformly continuous in the following sense.

THEOREM 1.3 Let u be a monotone function in the space WhHP(B"; w).
Suppose that n— 1 < p < n and w is Borel weight in the class A, for
some q in the range 1 <q <p/(n—1). Then, for any € >0, there
exists an open set U in R” satisfying cap, ,(U) < € and the function u
is uniformly continuous on B" \ U as a function

u (B, q) > (R,d)
where q is the hyperbolic metric in B" and d is the euclidean metric in R,
From now on, we will call these functions (p, w)-quasicontinuous.

Remark We do not identify w with the equivalence class of measur-
able functions which agree with w a.e., but rather work with a fixed
representative of w that we assume is a Borel function. The reason
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for this is that we will need to restrict w to (n — 1)-dimensional sets to
define the weighted (p, w)-modulus relative to a hypersurface.

Our second and central result of this paper, is a Sobolev type of
inequality for functions in the weighted Sobolev class WHP(R™; w).

TueorEM 1.4 Let u be a monotone function in the space WHP(R"; w).
Suppose that n—1 < p < n and w is Borel weight in the class Ay for
some q in the range 1 < q < p/(n—1). Then for any y € B"*(0, R) there
exists a constant ¢ independent of R such that the following inequality
holds

R

(0) —u(y)l < ¢ .

_— |Vi(x)IP w(x) dx.
(0, R) w(x) dx /IB"(O, R) Gl wt

As an immediate corollary to this result by letting R — oo we obtain
the following Liouville type theorem.

COROLLARY 1.5 Let u be a monotone function in the space whr(R"; w).
Suppose that n— 1 < p <n and w is Borel weight in the class A, for
some q in the range 1 < p/(n —1). Then if
. R?
im ———————=
R—00 [gng gy W(X) dx
we have that the function u is constant.

Our proofs will be based on the modulus method. The limitations
p>n—1and w to be a Borel function in the Muckenhoupt class
A, for some 1<gq <p/(n—1) appear in a modulus estimate, see
Lemma 2.3 in [3], on (n — 1)-dimensional spheres.

In Section 2 we will give some preliminaries and present the proofs
of Theorems 1.4 and 1.3 in this order. We are indebted to the anon-
ymous referee for the careful reading of the original manuscript.
We have incorporated in this paper several of his suggestions and
observations.

2. PRELIMINARIES AND PROOFS OF THEOREM 1.4
AND THEOREM 1.3

The open ball centered at xo with radius r is denoted by B"(xg, r).
Its boundary is the (n — 1)-dimensional sphere S"~Y(xo,r). By a cap
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of a sphere $"~!(xo,r) we mean a set H N .S"!(xy,r), where H is an
open half space in R". The spherical distance between two points in
R" is denoted by g(x,y). For a point x € dB" we write C(x) for the
Stolz cone at x with a fixed given aperture. There exists a constant
¢» > 1, depending only on the aperture and #, such that if y € C(x)
then

[y = x| < cu (1= y]). @.1)

By c(o,8,...) we denote a constant that depends only on the
parameters «, B, ... and that may change value from line to line.

Let " be a family of curves in R”. Denote by F(I') the collection
of admissible metrics for I'. These are nonnegative Borel measurable
functions p: R” — R U {oo} such that

/pdszl
v

for each locally rectifiable curve y € . For p > 1 the weighted
(p, w)-module of T is defined by

M) = pégfr) /l;e" & wdx.
If F')=1¢, we set M ,(I') = co. The same definition applies to
families of curves that lie in a (1n — 1)-dimensional submanifold S of
R”, replacing the measure w dx by wdS, where dS is the surface meas-
ure in the submanifold (note that nothing prevents w from being iden-
tically equal to oo on the submanifold). The surface module is denoted
by M]‘;”S(F).

After these preliminaries we pass to present the proof of
Theorem 1.4,

Proof of Theorem 1.4 Let B"(0, R) be the ball centered at 0 and radius
R. Select a point y € B"(0, R) with |y| < R/2. Without loss of general-
ity we can assume that %(0) < u(¥) (the case u(0) > u(y) is handled by
a symmetric argument). Set

A ={z € B*0, R): u(z) < u(0)}
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and
B = {z € B"(0, R): u(z) > u(y)}.

Since u is monotone we know that

ANS"x,0)# 8
and

BNS"Yx,0) # 8
for |y] <t < R. From now on let us denote

MPSTON(AAN 0,2, BN S"(0,1): 8" (0, 1)

by MI‘,”’SH(O”). Applying Lemma 2.3 in [3] with K =5""'(0,7) we
obtain

1 w510, 9} /47D
P9 = G DG DD (Mﬁ )

([, mornas)
S71(0,8)

for any ¢ between |y| < t < R. Using the fact that (n —p — D/ig— D+
(n— 1) is negative and since w is a positive weight, integrating the
above inequality between |y| and R we get

R | 1/(g-1)
- - p+1-m)/(g—1))—(n—1)
/| ( T ,)> < cnp, @) R

vl P
x < / w(x) /1= dx). (2.2)
B*(0, R)

Using Holder’s inequality, the definition of the modulus, exponentia-
ting the resulting inequality to the power g/q — 1 and using the mono-
tonicity property of the modulus in (2.2) we obtain that

R%/@=1

(+1-m)/(g—1)~(n—1)
]1/(q~1) <cR

x (/ w(x)!/1-9 dx).
B"(0, R)

[y (8(4.B, 70, R)
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Since by assumption the weight w € A4,(R"), using the A -condition we
have that

q/(q—1)
R < ¢R@HI-m/g—1)—(r=1)

[M;;V(A(A, B, B0, R)))]l/(q_l) <

Rra/(g—-1)

X
(Jiro, W) dix

)1/(!1—1) >

where ¢ is a constant depending on n, p, ¢ and w. Combining the
powers of R we obtain

My (A(4,B,B"(0,R)) = cR™” f w(x) dx. (2.3)
B*(0, R)

By Lemma 2.2 in [3] we obtain

. 1
MP (A(A,B,N(O, R))) < m/l;n(o’le) |Vu(x)|p W(x) dx. (24)

Combining inequalities (2.3) and (2.4) we obtain

1
R_P/ dxg————f Vuxprdx’
B"(0, R) W(X) Iu(x) _ u(y)lp OB | ( )l ( )

which can be rewritten as

R?

[u(x) —u( <c W

/ | Vu(x)|? w(x) dx. O
B'(0,R)

Our Corollary 1.5 follows immediately from this inequality. It is
worth to observe that in the case our weight w is identically equal to
1 then

lim S = lim RP™",
R5>00 f[B"(o, pWX)dx R
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which goes to 0 whenever p <n. In the case p = n the limit to be
considered is

AR

which also goes to 0 as R — co. Thus, Theorem 1.4 implies that the
only monotone Sobolev functions in R" are the constant functions.
We pass now to prove Theorem 1.3.

Proof of Theorem 1.3 It is well known that if w € 4, and g < p then
w € A,. By Theorem D in [l] we can extend u to a function f in
whr(R"; w) such that

/ VAP w(x)dx < ¢ / | Vu(x)| w(x) dx,
R B(0,1)

for some constant ¢ depending on n, p and the 4, constant of the
weight w. We continue to denote this extension by u. Fix ¢ > 0 and
choose U as in Lemma 3.3 in [3]. For a constant & to be determined
later, choose rg > 0 such that for 0 <r <rp and xo € B (0, )\ U,

/w o) IVu()lP wy)dy < 8o r? wB"(x0,7))- (2.5)

We want to show that for any x € B”\ U and any positive §, there
exists a positive M such that whenever y € B"(x, M(1 — |x])) we
have that

|u(x) — u(y)l <4

For this select an arbitrary point xo € B\ U. Select now a point
y € B"(xq, (1 — |xo])/4). We may assume that u(xp) < u(y) (the case
u(xo) > u(y) is handled by a symmetric argument). Set

A= {z e B” (xo, ! —2|x0|>: u(z) < u()éo)}

and

B= {z € B”(xo, ! —2|X0|): u(z) > u(y)}.
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Since u is monotone we know that

AN S Yxo,0) # 6

and
BN S"(xo,2) # §

for |xg — y| <t < (1 —|xp])/2. As in Theorem 1.3, under these circum-
stances we obtain the following inequality

1

e S — [Vu(x)l? w(x)dx
[u(x0) = 4O By, (1= 1x02)

C
> w(y) dy.
(1= 1x01Y Jmrcxo, (1-1x0y/2)

Since xp € [’B?"(o, 1)\ U and choosing r = (1 — |x¢|)/2 < rp in (2.5) we
obtain

1 _ n 1 — IXOI
o) —wugyp 20 XD pw<B (x"’ > ))

c

P — w(y) dy,
(1 = 1x0lY JBr(xo, (1= 1%0D/2)

where we have denoted fIB”(xo, (=lxo)y2) W) dy by w(B" (xo, (1—[x0])/2)).
This is equivalent to say that

lu(xo) — u()I’ < ¢ 8o = 8.
Choosing § such that ¢/ §)” =& we obtain our desired result for

points xo € B"\ U near the boundary of B", for the remaining
points inside B” the result is trivial by uniform continuity. |
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