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1. INTRODUCTION
We are going to start with some preliminary definitions.

DEFINITION 1 Let E be a compact set in the complex plane, and let Q be its com-
plement with boundary 0S). Let g(z) be the Green’s function of §t with pole at oo.
The Green’s function g(z) is harmonic in Q, it vanishes on 05}, and its asymptotic
vekiavior at co is of the form

g(z) = log|z| + 7 + €(2),

where v is a constant and €(z) — 0 for z — co. The constant v = y(E) is called the
Robin constant of E.

DEFINITION 2 Let E; and E, be two disjoint subsets of an open set Q. Let T be the
set of all the rectifiable curves joining E1 and E,. Let P(L) be the set of all nonnegative
Borel measurable functions such that for any p € P(L),

[p@ldz =1,
A
“rany AeT. We define the extremal distance do(En, E,) between Ey and E; as

1
do(E,Ey)) = sup ——src—.
a(E1, £2) pEPFL) [JaP?(z)dxdy

In this note we extend Pfliiger’s theorem [3] relating the logarithmic capacity of a
‘T{GSed set E on the unit circle OA and the extremal distance in A between E and a
'imple closed Jordan curve Ay enclosing the origin and contained in the disc A, =
ZEA |z| < ro} where 0 < ry <1.
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THEOREM A Let E be a closed subset on the unit circle and let d(E,)o) be the
extremal distance in A between E and )\g. Then there exist constants C and C' de-
pending only on Ay such that

2y(E) + C < 2mda(E,m0) < 2(E) + C'.

Since cap(E) = e~7*), an immediate consequence of Theorem A is the following
Corollary.

COROLLARY A A closed set E on the unit circle has zero logarithmic capacity if and
only if da(E,C,,) = oo, for some value ry, 0< ro < 1, where C,, = {z€ A : |z| = ro}.

Let us remark here that Corollary A can be easily proved using the method of
the extremal metric, see Lemma 7 in [2].

Our aim is to prove an analog to Theorem A for more general simply connected
domains. In particular we consider simply connected domains 2 whose boundary is
a quasicircle, that is, if we denote by a(w;,w;) the subarc of 8Q of smaller euclidean
diameter connecting w; and w,, then there exists a constant C depending only on

90 such that
diam[a(w1, )] < Clwy — wy|.

We shall call these domains quasidiscs. For these domains we prove the following
results.

THEOREM 1 Assume that Q is a quasidisc. Then there exists a point wy in Q and a
simple closed Jordan curve A, enclosing wy in § such that for any closed E C 01,

C17(E) +G < WdQ(E,/\WO) < C37(E) + Ca,
where the constants Cy and C; depend only on Q, and C, and Cy also depend on the
curve A,
As an immediate corollary to this theorem we obtain

COROLLARY 1 Let Q be a quasidisc. Then for any closed E C 89, E has logarithmic
capacity zero if and only if dq(Aw,, E) = oo for some wy € Q and A, as in Theorem 1.

The following theorem and corollary are the generalizations to quasidiscs of the-
orem 4.9 in [1].

THEOREM 2 Under the same hypothesis as in Theorem 1, if C. = {w : |w —wq| =
r;, 0<r<; dxst(wO,BQ), then for any finite union of closed arcs E on 0%,

‘ E

Jor some value 0 < k < 1, which depends only on the constant of quasiconformality of
oQ.

COROLLARY 2 Under the same hypothesis as in Theorem 2, if V is the set of subhar-
monic functions v(z) in Q such that v € [CY(Q)N C(Q)], v(z) <0 on E and v(wo) 2
1, then
m(1—k) w(1+k)
V(E) 7E) ’

< min{D[v]} <
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where D[v] is the Dirichlet integral of v(z) in Q. For a definition of D[v], see
(1, p. 32].
In section 2 we will give some preliminaries such as definitions and known results

which will be used in the proofs. Finally in section 3 we shall prove all the results
stated in the introduction.

2. PRELIMINARIES

DEFINITION 3 We say that a normalized univalent function, g(z) = z + by + (b1/2z) +
..., defined in the exterior of the unit disc AS, is in the class 3 (k), 0< k<1, if it
has a homeomorphic extension to C that is K -quasiconformal in the unit disc, where
K is a constant depending only on k.

For this class of functions we have the following result, Theorem 9.14 in [4,
p- 292].

THEOREM B Let g(z) = z+bo + (b1/2) + - be a normalized univalent function
defined in the exterior of the unit disc. Then the following are equivalent.

(2) g(A°) is bounded by a quasicircle.
(b) g(2) € Y (k) for some 0 < k < 1.

We will need the following result.

THEOREM 3 Let g(z) € S (k) for some 0 < k < 1and A C OA compact. Then

[cap(A)]'* < caplg(A)] < [cap(A)] .

Proof Following Pommerenke’s proof of Theorem 11.7 in [4, p. 346], we find
that

{A,,[g(rA)]}l/(n("_l)) < rl—k{A”(A)}(l—k)/(n(n—l)) (21)

for any r > 1, where

n a
A (E)Y= zx.T?,.erH l’1:‘[1|Z# — 2z,

p#v

Since g(z) extends to a homeomorphism in the complex plane, g(A4) is compact.
Let z,...,z, be points in A such that {g(zu)}z=1 are nth order Fekete points of
8(A), which are the points that maximize A,[g(4)]. Then for fixed n we have

1/(n(n-1)) 1/(n(n-1))
n n n n
T ITle@) - 82 =lim | [T [[1s(rz) -2 ()]

u=lv=1 p=1v=1
n#v r#v
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Thus using (2.1)
{A"[g(A)]}l/(n(n—l)) < rler} rl—k{An(A)}(l—k)/(n(n—l))

= {Ap(A) IR/ (r(n-1))

letting n — oo in both sides of the above inequality we obtain the second inequality.
The first inequality is obtained in a similar way.
After these preliminaries we are ready to prove our results.

3. PROOFS

Proof of Theorem 1
Claim  Any closed subset of a quasidisc is compact.

Proof of the Claim  Consider the normalized conformal mapping g(z) : A€~ QF,
the exterior of £, with a Laurent series 8(z)=z+by+(bi/z)+---. Then since by
hypothesis 9Q is a quasiconformal curve, by Theorem B, g(z) € 3 (k) for some
value 0 <k <1, that is g(z) has a K-quasiconformal extension to the complex
plane. This implies that g~!(E) is closed and bounded since g YE)c 84, thus
g~ Y(E) is compact. Since g (E)) = E, this shows that E is also compact, and
this proves the claim.

Pfliger’s theorem applied to g ~'(E) tells us that,

167 EN 5 <rdaG B Gy s+ S e
Since, 7(g ~!(£)) = — log[cap(g ~1(E))], by Theorem 3 we have that
—(1=k)loglcap(g ™ (E))] < ~loglcap(E)] < ~(1 + k)loglcap(g ~}(E))].
This is equivalent to

(1-ky(e HE) < 9(E) < (1 + k(g ~\(E)) (3-2)

It is well known that since g(z) is a quasiconformal map with constant of quasicon-
formality K, then

1
g 92(E:8(C)) < da(@ ! (E), G,) < K da(E,g(Cry)). (3:3)
Combining (3.1), (3.2) and (3.3) we obtain that

WEK | CK
a-k) "2

1%1(?;7) + % < mda(E,g(Gy)) <

Let wo = g(0) and +,,, = g(C,,). Then we get our desired result
GY(E)+ G <mdq(E, Two) < GY(E) + Cy,
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where , K
G = K(i+k 2 G= )

are constants which only depend on the constant of quasiconformality of 2, and
G = C/2K and Cy = C'K /2 are constants which depend on the constant of quasi-
conformality of Q and the simple and closed curve Awge

The proof of Corollary 1 follows directly from Theorem 1 and hence we omit it.

Proof of Theorem 2 By the conformal invariance of extremal distance we have
that

da(G, E) — da(C,,00) = da(®71(C,), 8 (E)) - da(95,27HG))  (3.4)

where @ : A Q is a conformal map from A to Q such that &(0) = wy.

Let 6, = min{z : [®(z)—wo| =r} and O, = max{z : |®(z) — wo| = r}. Applying
the comparison principle for extremal length to the right hand side of (3.4) we
obtain the following inequalities,

da(27Y(E), Co,) — da (8, C,) < da(3Y(E),871(C,)) - da(271(G),00)
<da(®@7YE), Cs,) - da(dN, Co,), (3.5)

where Cg, = {z : |z] =6,} and Co, = {2 : |z] = ©,}. Adding and subtracting da (84,
Cy,) from the right hand side of (3.5), and adding and subtracting d 5 (94, Ce,) from
the left hand side of (3.5), and then using equality (3.4), we obtain

. _ RINLS
4a(®7(E), Co,) = da (04, Co,) + - log 5
< da(E,G) - da(00,G)
S da(@7HE), Co,)~da(9A,Co,) + 2—17; log [ %J : (3.6)

Letting r — 0, it is clear that lim, _o(1/27)log[6,/©,] = 0 and both sides of (3.6)
tend to (1/7)y(®~Y(E)) as r tends to 0 by theorems 4.9 and 2.4 in [1]. Thus

Y@ NE) =7 lim{do(E,C;) - da(00, )} (3.7

By (3.2) with & replaced by g we obtain the desired result.
Corollary 2 follows directly from Theorem 4.9 in [1] and Theorem 3 in the same
way than Theorem 2 does, thus we omit the proof.

A natural question to ask is whether the converse of Theorem 1 is true. Namely,
if Q is a simply connected domain such that there exist a closed Jordan curve A in
2 and constants G, Gy, Gy and Gy depending only on © and A, with the property
that for any closed set E C 69,

CYEY+ G < de(E,/\) SGYEY+ G (38)

then is 0 a quasidisc?
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If this were true, it would give a new characterization for quasidiscs. Unfortu-
mately this is not true as the following construction shows.

Let Qe = A\(~1,-1+ €] and fe be the conformal mapping from {2, onto the unit
disc A such that £,(0) = 0 and f/(0) > 0.

It is clear that . is not a quasidisc. Our goal is to show that for € small enough
the inequalities (3.8) are satisfied.

The theory of prime ends and standard results in boundary correspondence for
conformal mappings show that f, is defined on Q. Let E C 0Q,, then fe(E)C an,
and by the conformal invariance of the extremal distance

da (E,A) = da(fe(E), f(N)).
We can apply Schwarz’s lemma to the function f1, to obtain
SIS WL 10T (0) < 1.
By the comparison principle for extremal distances we have that
dq, (E’fc_l(cro)) 2 dq (E,G,) > dq (E, Crera)s
forany 0< ry < 1. Let ) be G, then
da (E,C.,) = da(fe(E), [(Cr)),
and by Pfliiger’s theorem
Aa(f(E) [(Co)) 2 CY(fe(E)) + . (3.9)

The function (f71(2))/((f7') (0)) € S, the class of normalized univalent functions
in the unit disc. Thus by [4, p. 351]

5P E) 2 Selean BN
Exponentiating both sides of the above inequality we obtain
= 10g|(/7Y (O] = ¥(E) > — log 16 - 29(f.(E)).
Thus,
YU(E)) 2 3[7(E) +1og](f7)'(0)] ~ log 16]
-2 [7(15) +10g YO 511;'(0)' J .

This allows us to bound (3.9) from below to obtain

G G ~1y'(0
90.(8,G) = daUuB)1(C) 2 F9(8) + Siog UV O L ¢, 5.4
Since lime_o(f,71)'(0) = 1, for € small enough we have that
G
da(E,Co) 2 —(E) + G,

with G, C being universal constants.
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To get the other inequality, we observe that lime_.q fe(2) = z uniformly in A. With-
out loss of generality we can assume that E C A is compact.
Assume that {24} <15 are nth order Fekete points of E C A, then

1/(n(n—1))

[An(E)]l/(n(n—l) = fI ﬁ IZV _ zlll

v=1p=1
1344
1/(n(n-1))
n n
= }l_l’g H H |fe(zu) "ff(zl‘)!
v=1p=1
vi#p
. 1/(n(n—1)) 3.11
< lim {[A,(/.(EY)] }- (-11)

It is not difficult to show that by the symmetry of the function f((z), fe(E) is also
compact for any positive ¢, hence

lim [A,(fe(EN]/C@=D) = cap(fe(E)).

n—o0

Thus, for each § > 0 there exists ny(8,€) = ny such that
[Bne(f(EN]/Coto=1) < cap(f(E)) + 6,
thus substituting this in (3.11) for » = ng(d,€) = nyg,
(Baa (N300 < tim{cap(f.(E))] + 6.
Since ng = ny(6,€) - 0 as § — 0, we obtain that
cap(E) < limleap(/.(E))).

Since the limit in € is uniform we can find a positive constant Gy independent of ¢
and E such that,

cap(E) < cap(f(E)) + G,
for € small enough. Thus,
VE)Z Y(f(E)+C),  (Chy<0). (3.12)

Eix € small enough so that (3.12) holds for any E C A compact. We take E C 9§, C
A, then fe(E) C A and applying Pfliiger’s theorem we have that

C37(f€(E)) + G > dA(fe(E),fe(Cro)) = dQ((E7 C’o)
and by (3.12),

CYfe(EN + G < GYE) + G — GG = GY(E) + Gy,
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with C; independent of € and E. Hence,
da (E,Go) < GY(E) + G,

this together with (3.10) give the desired inequalities for some domain Q¢, which is
not a quasidisc.
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