Complex Variables, 1992, Vol. 19, pp. 211-218
Reprints available directly from the publisher
Photocopying permitted by license only
© 1992 Gordon and Breach Science Publishers S.A.
Printed in the United States of America

An Extremal Length Characterization of Closed Sets with Zero Logarithmic Capacity on Quasicircles

ENRIQUE VILLAMOR

Florida International University, Miami, FL 33199

in this note we extend Pflüger's theorem relating logarithmic capacity and extremal length for closed subsets on the unit disc to closed subsets on quasicircles.

AMS No. 30C60, 30C85 Communicated: R. Gilbert (Received May 3, 1991)

1. INTRODUCTION

We are going to start with some preliminary definitions.

DEFINITION 1 Let E be a compact set in the complex plane, and let Ω be its complement with boundary $\partial\Omega$. Let g(z) be the Green's function of Ω with pole at ∞ . The Green's function g(z) is harmonic in Ω , it vanishes on $\partial\Omega$, and its asymptotic behavior at ∞ is of the form

$$g(z) = \log|z| + \gamma + \epsilon(z),$$

where γ is a constant and $\epsilon(z) \to 0$ for $z \to \infty$. The constant $\gamma = \gamma(E)$ is called the Robin constant of E.

DEFINITION 2 Let E_1 and E_2 be two disjoint subsets of an open set Ω . Let Γ be the set of all the rectifiable curves joining E_1 and E_2 . Let P(L) be the set of all nonnegative Borel measurable functions such that for any $\rho \in P(L)$,

$$\int_{\lambda} \rho(z)|dz| \geq 1,$$

for any $\lambda \in \Gamma$. We define the extremal distance $d_{\Omega}(E_1, E_2)$ between E_1 and E_2 as

$$d_{\Omega}(E_1, E_2) = \sup_{\rho \in P(L)} \frac{1}{\iint_{\Omega} \rho^2(z) dx dy}.$$

In this note we extend Pflüger's theorem [3] relating the logarithmic capacity of a closed set E on the unit circle $\partial \Delta$ and the extremal distance in Δ between E and a imple closed Jordan curve λ_0 enclosing the origin and contained in the disc $\Delta_{r_0} = \{z \in \Delta : |z| < r_0\}$ where $0 < r_0 < 1$.

THEOREM A Let E be a closed subset on the unit circle and let $d_{\Delta}(E, \lambda_0)$ be the extremal distance in Δ between E and λ_0 . Then there exist constants C and C' depending only on λ_0 such that

$$2\gamma(E) + C \leq 2\pi d_{\Delta}(E, \gamma_0) \leq 2\gamma(E) + C'$$
.

Since $cap(E) = e^{-\gamma(E)}$, an immediate consequence of Theorem A is the following Corollary.

COROLLARY A closed set E on the unit circle has zero logarithmic capacity if and only if $d_{\Delta}(E, C_{r_0}) = \infty$, for some value r_0 , $0 < r_0 < 1$, where $C_{r_0} = \{z \in \Delta : |z| = r_0\}$.

Let us remark here that Corollary A can be easily proved using the method of the extremal metric, see Lemma 7 in [2].

Our aim is to prove an analog to Theorem A for more general simply connected domains. In particular we consider simply connected domains Ω whose boundary is a quasicircle, that is, if we denote by $\alpha(w_1, w_2)$ the subarc of $\partial\Omega$ of smaller euclidean diameter connecting w_1 and w_2 , then there exists a constant C depending only on $\partial\Omega$ such that

$$\operatorname{diam}[\alpha(w_1, w_2)] \leq C|w_1 - w_2|.$$

We shall call these domains quasidiscs. For these domains we prove the following results.

THEOREM 1 Assume that Ω is a quasidisc. Then there exists a point w_0 in Ω and a simple closed Jordan curve λ_{w_0} enclosing w_0 in Ω such that for any closed $E \subset \partial \Omega$,

$$C_1\gamma(E)+C_2\leq \pi d_{\Omega}(E,\lambda_{w_0})\leq C_3\gamma(E)+C_4,$$

where the constants C_1 and C_3 depend only on Ω , and C_2 and C_4 also depend on the curve λ_{w_0} .

As an immediate corollary to this theorem we obtain

COROLLARY 1 Let Ω be a quasidisc. Then for any closed $E \subset \partial \Omega$, E has logarithmic capacity zero if and only if $d_{\Omega}(\lambda_{w_0}, E) = \infty$ for some $w_0 \in \Omega$ and λ_{w_0} as in Theorem 1.

The following theorem and corollary are the generalizations to quasidiscs of theorem 4.9 in [1].

THEOREM 2 Under the same hypothesis as in Theorem 1, if $C_r = \{w : |w - w_0| = r\}$, $0 < r < \frac{1}{2} \operatorname{dist}(w_0, \partial \Omega)$, then for any finite union of closed arcs E on $\partial \Omega$,

$$\frac{\gamma(E)}{1+k} \leq \pi \lim_{r \to 0} [d_{\Omega}(C_r, E) - d_{\Omega}(C_r, \partial \Omega)] \leq \frac{\gamma(E)}{1-k}.$$

for some value 0 < k < 1, which depends only on the constant of quasiconformality of $\partial \Omega$.

COROLLARY 2 Under the same hypothesis as in Theorem 2, if V is the set of subharmonic functions v(z) in Ω such that $v \in [C^1(\Omega) \cap C(\overline{\Omega})], v(z) \leq 0$ on E and $v(w_0) \geq 1$, then

 $\frac{\pi(1-k)}{\gamma(E)} \leq \min_{v \in V} \{D[v]\} \leq \frac{\pi(1+k)}{\gamma(E)},$

where D[v] is the Dirichlet integral of v(z) in Ω . For a definition of D[v], see [1, p. 32].

In section 2 we will give some preliminaries such as definitions and known results which will be used in the proofs. Finally in section 3 we shall prove all the results stated in the introduction.

2. PRELIMINARIES

DEFINITION 3 We say that a normalized univalent function, $g(z) = z + b_0 + (b_1/z) + \dots$, defined in the exterior of the unit disc Δ^c , is in the class $\sum (k)$, $0 \le k \le 1$, if it has a homeomorphic extension to C that is K-quasiconformal in the unit disc, where K is a constant depending only on k.

For this class of functions we have the following result, Theorem 9.14 in [4, p. 292].

THEOREM B Let $g(z) = z + b_0 + (b_1/z) + \cdots$ be a normalized univalent function defined in the exterior of the unit disc. Then the following are equivalent:

- (a) $g(\Delta^c)$ is bounded by a quasicircle.
- (b) $g(z) \in \sum (k)$ for some 0 < k < 1.

We will need the following result.

THEOREM 3 Let $g(z) \in \sum (k)$ for some $0 \le k \le 1$ and $A \subset \partial \Delta$ compact. Then

$$[cap(A)]^{1+k} \le cap[g(A)] \le [cap(A)]^{1-k}.$$

Proof Following Pommerenke's proof of Theorem 11.7 in [4, p. 346], we find that

$$\{\Delta_n[g(rA)]\}^{1/(n(n-1))} \le r^{1-k} \{\Delta_n(A)\}^{(1-k)/(n(n-1))}$$
(2.1)

for any r > 1, where

$$\Delta_n(E) = \max_{z_1, \dots, z_n \in E} \prod_{\substack{\mu = 1 \\ \mu \neq \nu}}^n \prod_{\nu = 1}^n |z_{\mu} - z_{\nu}|.$$

Since g(z) extends to a homeomorphism in the complex plane, g(A) is compact. Let $z_1, ..., z_n$ be points in A such that $\{g(z_\mu)\}_{\mu=1}^n$ are nth order Fekete points of g(A), which are the points that maximize $\Delta_n[g(A)]$. Then for fixed n we have

$$\left[\prod_{\substack{\mu=1\\\mu\neq\nu}}^{n}\prod_{\nu=1}^{n}|g(z_{\mu})-g(z_{\nu})|\right]^{1/(n(n-1))} = \lim_{r\to 1}\left[\prod_{\substack{\mu=1\\\mu\neq\nu}}^{n}\prod_{\nu=1}^{n}|g(rz_{\mu})-g(rz_{\nu})|\right]^{1/(n(n-1))}.$$

Thus using (2.1)

$$\begin{aligned} \{\Delta_n[g(A)]\}^{1/(n(n-1))} &\leq \lim_{r \to 1} r^{1-k} \{\Delta_n(A)\}^{(1-k)/(n(n-1))} \\ &= \{\Delta_n(A)\}^{(1-k)/(n(n-1))}, \end{aligned}$$

letting $n \to \infty$ in both sides of the above inequality we obtain the second inequality. The first inequality is obtained in a similar way.

After these preliminaries we are ready to prove our results.

3. PROOFS

Proof of Theorem 1
Claim Any closed subset of a quasidisc is compact.

Proof of the Claim Consider the normalized conformal mapping $g(z): \Delta^c \mapsto \Omega^c$, the exterior of Ω , with a Laurent series $g(z)=z+b_0+(b_1/z)+\cdots$. Then since by hypothesis $\partial\Omega$ is a quasiconformal curve, by Theorem B, $g(z)\in \sum (k)$ for some value 0< k<1, that is g(z) has a K-quasiconformal extension to the complex plane. This implies that $g^{-1}(E)$ is closed and bounded since $g^{-1}(E)\subset\partial\Delta$, thus $g^{-1}(E)$ is compact. Since $g(g^{-1}(E))=E$, this shows that E is also compact, and this proves the claim.

Pflüger's theorem applied to $g^{-1}(E)$ tells us that,

$$\gamma(g^{-1}(E)) + \frac{C}{2} \le \pi d_{\Delta}(g^{-1}(E), C_{r_0}) \le \gamma(g^{-1}(E)) + \frac{C'}{2}. \tag{3.1}$$

Since, $\gamma(g^{-1}(E)) = -\log[cap(g^{-1}(E))]$, by Theorem 3 we have that

$$-(1-k)\log[cap(g^{-1}(E))] \le -\log[cap(E)] \le -(1+k)\log[cap(g^{-1}(E))].$$

This is equivalent to

$$(1-k)\gamma(g^{-1}(E)) \le \gamma(E) \le (1+k)\gamma(g^{-1}(E))$$
(3.2)

It is well known that since g(z) is a quasiconformal map with constant of quasiconformality K, then

$$\frac{1}{K}d_{\Omega}(E, g(C_{r_0})) \le d_{\Delta}(g^{-1}(E), C_{r_0}) \le K d_{\Omega}(E, g(C_{r_0})). \tag{3.3}$$

Combining (3.1), (3.2) and (3.3) we obtain that

$$\frac{\gamma(E)}{K(1+k)} + \frac{C}{2K} \leq \pi d_{\Omega}(E, g(C_{r_0})) \leq \frac{\gamma(E)K}{(1-k)} + \frac{C'K}{2}.$$

Let $w_0 = g(0)$ and $\gamma_{w_0} = g(C_{r_0})$. Then we get our desired result

$$C_1\gamma(E)+C_2\leq \pi d_{\Omega}(E,\gamma_{w_0})\leq C_3\gamma(E)+C_4,$$

where

$$C_1 = \frac{1}{K(1+k)}$$
 and $C_3 = \frac{K}{(1-k)}$

are constants which only depend on the constant of quasiconformality of Ω , and $C_2 = C/2K$ and $C_4 = C'K/2$ are constants which depend on the constant of quasiconformality of Ω and the simple and closed curve λ_{w_0} .

The proof of Corollary 1 follows directly from Theorem 1 and hence we omit it.

Proof of Theorem 2 By the conformal invariance of extremal distance we have that

$$d_{\Omega}(C_r, E) - d_{\Omega}(C_r, \partial \Omega) = d_{\Delta}(\Phi^{-1}(C_r), \Phi^{-1}(E)) - d_{\Delta}(\partial \Delta, \Phi^{-1}(C_r))$$
(3.4)

where $\Phi:\Delta\mapsto\Omega$ is a conformal map from Δ to Ω such that $\Phi(0)=w_0$.

Let $\theta_r = \min\{z : |\Phi(z) - w_0| = r\}$ and $\Theta_r = \max\{z : |\Phi(z) - w_0| = r\}$. Applying the comparison principle for extremal length to the right hand side of (3.4) we obtain the following inequalities,

$$d_{\Delta}(\Phi^{-1}(E), C_{\Theta_r}) - d_{\Delta}(\partial \Delta, C_{\theta_r}) \le d_{\Delta}(\Phi^{-1}(E), \Phi^{-1}(C_r)) - d_{\Delta}(\Phi^{-1}(C_r), \partial \Delta)$$

$$\le d_{\Delta}(\Phi^{-1}(E), C_{\theta_r}) - d_{\Delta}(\partial \Delta, C_{\Theta_r}), \tag{3.5}$$

where $C_{\theta_r} = \{z : |z| = \theta_r\}$ and $C_{\Theta_r} = \{z : |z| = \Theta_r\}$. Adding and subtracting $d_{\Delta}(\partial \Delta, C_{\theta_r})$ from the right hand side of (3.5), and adding and subtracting $d_{\Delta}(\partial \Delta, C_{\Theta_r})$ from the left hand side of (3.5), and then using equality (3.4), we obtain

$$d_{\Delta}(\Phi^{-1}(E), C_{\Theta_{r}}) - d_{\Delta}(\partial \Delta, C_{\Theta_{r}}) + \frac{1}{2\pi} \log \left[\frac{\theta_{r}}{\Theta_{r}} \right]$$

$$\leq d_{\Omega}(E, C_{r}) - d_{\Omega}(\partial \Omega, C_{r})$$

$$\leq d_{\Delta}(\Phi^{-1}(E), C_{\theta_{r}}) - d_{\Delta}(\partial \Delta, C_{\theta_{r}}) + \frac{1}{2\pi} \log \left[\frac{\Theta_{r}}{\theta_{r}} \right]. \tag{3.6}$$

Letting $r \to 0$, it is clear that $\lim_{r \to 0} (1/2\pi) \log[\theta_r/\Theta_r] = 0$ and both sides of (3.6) tend to $(1/\pi)\gamma(\Phi^{-1}(E))$ as r tends to 0 by theorems 4.9 and 2.4 in [1]. Thus

$$\gamma(\Phi^{-1}(E)) = \pi \lim_{r \to 0} \{ d_{\Omega}(E, C_r) - d_{\Omega}(\partial \Omega, C_r) \}.$$
(3.7)

By (3.2) with Φ replaced by g we obtain the desired result.

Corollary 2 follows directly from Theorem 4.9 in [1] and Theorem 3 in the same way than Theorem 2 does, thus we omit the proof.

A natural question to ask is whether the converse of Theorem 1 is true. Namely, if Ω is a simply connected domain such that there exist a closed Jordan curve λ in Ω and constants C_1 , C_2 , C_3 and C_4 depending only on Ω and λ , with the property that for any closed set $E \subset \partial \Omega$,

$$C_1\gamma(E) + C_2 \le \pi d_{\Omega}(E,\lambda) \le C_3\gamma(E) + C_4 \tag{3.8}$$

then is Ω a quasidisc?

If this were true, it would give a new characterization for quasidiscs. Unfortumately this is not true as the following construction shows.

Let $\Omega_{\epsilon} = \Delta \setminus (-1, -1 + \epsilon]$ and f_{ϵ} be the conformal mapping from Ω_{ϵ} onto the unit disc Δ such that $f_{\epsilon}(0) = 0$ and $f'_{\epsilon}(0) > 0$.

It is clear that Ω_{ϵ} is not a quasidisc. Our goal is to show that for ϵ small enough the inequalities (3.8) are satisfied.

The theory of prime ends and standard results in boundary correspondence for conformal mappings show that f_{ϵ} is defined on $\partial \Omega_{\epsilon}$. Let $E \subset \partial \Omega_{\epsilon}$, then $f_{\epsilon}(E) \subset \partial \Delta$, and by the conformal invariance of the extremal distance

$$d_{\Omega_{\epsilon}}(E,\lambda) = d_{\Delta}(f_{\epsilon}(E), f_{\epsilon}(\lambda)).$$

We can apply Schwarz's lemma to the function f_{ϵ}^{-1} , to obtain

$$|f_{\epsilon}^{-1}(w)| \le |w|, \qquad |(f_{\epsilon}^{-1})'(0)| \le 1.$$

By the comparison principle for extremal distances we have that

$$d_{\Omega_{\epsilon}}(E, f_{\epsilon}^{-1}(C_{r_0})) \geq d_{\Omega_{\epsilon}}(E, C_{r_0}) \geq d_{\Omega_{\epsilon}}(E, C_{f_{\epsilon}(r_0)}),$$

for any $0 < r_0 < 1$. Let λ be C_{r_0} , then

$$d_{\Omega_{\epsilon}}(E,C_{r_0})=d_{\Delta}(f_{\epsilon}(E),f_{\epsilon}(C_{r_0})),$$

and by Pflüger's theorem

$$d_{\Delta}(f_{\epsilon}(E), f_{\epsilon}(C_{r_0})) \ge C_1 \gamma(f_{\epsilon}(E)) + C_2. \tag{3.9}$$

The function $(f_{\epsilon}^{-1}(z))/((f_{\epsilon}^{-1})'(0)) \in S$, the class of normalized univalent functions in the unit disc. Thus by [4, p. 351]

$$\frac{1}{|(f_{\epsilon}^{-1})'(0)|}cap(E) \geq \frac{1}{16}[cap(f_{\epsilon}(E))]^2.$$

Exponentiating both sides of the above inequality we obtain

$$-\log[|(f_{\epsilon}^{-1})'(0)|] - \gamma(E) \ge -\log 16 - 2\gamma(f_{\epsilon}(E)).$$

Thus,

$$\gamma(f_{\epsilon}(E)) \ge \frac{1}{2} [\gamma(E) + \log |(f_{\epsilon}^{-1})'(0)| - \log 16]$$

$$= \frac{1}{2} \left[\gamma(E) + \log \frac{|(f_{\epsilon}^{-1})'(0)|}{16} \right].$$

This allows us to bound (3.9) from below to obtain

$$d_{\Omega_{\epsilon}}(E, C_{r_0}) = d_{\Delta}(f_{\epsilon}(E), f_{\epsilon}(C_{r_0})) \ge \frac{C_1}{2} \gamma(E) + \frac{C_1}{2} \log \frac{|(f_{\epsilon}^{-1})'(0)|}{16} + C_2. \quad (3.10)$$

Since $\lim_{\epsilon \to 0} (f_{\epsilon}^{-1})'(0) = 1$, for ϵ small enough we have that

$$d_{\Omega_\epsilon}(E,C_{r_0}) \geq \frac{C_1}{2} \gamma(E) + C_2',$$

with C_1 , C'_2 being universal constants.

To get the other inequality, we observe that $\lim_{\epsilon \to 0} f_{\epsilon}(z) = z$ uniformly in $\overline{\Delta}$. Without loss of generality we can assume that $E \subset \overline{\Delta}$ is compact.

Assume that $\{z_{\mu}\}_{\mu=1}^{n}$, are *n*th order Fekete points of $E \subset \overline{\Delta}$, then

$$[\Delta_{n}(E)]^{1/(n(n-1))} = \left[\prod_{\nu=1}^{n} \prod_{\mu=1}^{n} |z_{\nu} - z_{\mu}| \right]^{1/(n(n-1))}$$

$$= \lim_{\epsilon \to 0} \left\{ \prod_{\nu=1}^{n} \prod_{\mu=1}^{n} |f_{\epsilon}(z_{\nu}) - f_{\epsilon}(z_{\mu})| \right\}^{1/(n(n-1))}$$

$$\leq \lim_{\epsilon \to 0} \left\{ [\Delta_{n}(f_{\epsilon}(E))]^{1/(n(n-1))} \right\}. \tag{3.11}$$

It is not difficult to show that by the symmetry of the function $f_{\epsilon}(z)$, $f_{\epsilon}(E)$ is also compact for any positive ϵ , hence

$$\lim_{n\to\infty} [\Delta_n(f_{\epsilon}(E))]^{1/(n(n-1))} = cap(f_{\epsilon}(E)).$$

Thus, for each $\delta > 0$ there exists $n_0(\delta, \epsilon) = n_0$ such that

$$[\Delta_{n_0}(f_{\epsilon}(E))]^{1/(n_0(n_0-1))} \leq cap(f_{\epsilon}(E)) + \delta,$$

thus substituting this in (3.11) for $n = n_0(\delta, \epsilon) = n_0$,

$$[\Delta_{n_0}(E)]^{1/(n_0(n_0-1))} \leq \lim_{\epsilon \to 0} [cap(f_{\epsilon}(E))] + \delta.$$

Since $n_0 = n_0(\delta, \epsilon) \to \infty$ as $\delta \to 0$, we obtain that

$$cap(E) \leq \lim_{\epsilon \to 0} [cap(f_{\epsilon}(E))].$$

Since the limit in ϵ is uniform we can find a positive constant C_0 independent of ϵ and E such that,

$$cap(E) \leq cap(f_{\epsilon}(E)) + C_0$$

for ϵ small enough. Thus,

$$\gamma(E) \ge \gamma(f_{\epsilon}(E)) + C_0' \qquad (C_0' < 0). \tag{3.12}$$

Fix ϵ small enough so that (3.12) holds for any $E \subset \overline{\Delta}$ compact. We take $E \subset \partial \Omega_{\epsilon} \subset \overline{\Delta}$, then $f_{\epsilon}(E) \subset \partial \Delta$ and applying Pflüger's theorem we have that

$$C_3\gamma(f_\epsilon(E))+C_4\geq d_\Delta(f_\epsilon(E),f_\epsilon(C_{r_0}))=d_{\Omega_\epsilon}(E,C_{r_0})$$

and by (3.12),

$$C_3\gamma(f_{\epsilon}(E)) + C_4 \leq C_3\gamma(E) + C_4 - C_3C_0' = C_3\gamma(E) + C_4'$$

with C'_4 independent of ϵ and E. Hence,

$$d_{\Omega_{\epsilon}}(E, C_{r_0}) \leq C_3 \gamma(E) + C_4',$$

this together with (3.10) give the desired inequalities for some domain Ω_{ϵ} , which is not a quasidisc.

References

- [1] L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Book Company, New York, 1973.
- [2] J. A. Jenkins, On quasiconformal mappings, Journal of Rat. Mech. and Anal. 5 (1956), 343-352.
- [3] A. Pflüger, Extremallängen und Kapazität, Comment. Math. Helv. 29 (1955), 120-131.
- [4] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht: Gottingen, 1975.