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An Extension of Reshetnyak’s Theorem
ENRIQUE VILLAMOR & JUAN J. MANFREDI

ABSTRACT. Let F € Wh*(9;R") be a mapping with non
negative Jacobian Jr(z) = detDF(z) > 0 for a. e. z in
a domain @ C R™. The dilatation of F' is defined (almost

everywhere in 1) by the formula

- S

If K is bounded, the mapping F' is said to be quasiregular.
These are a generalization to higher dimensions of holomor-
phic functions. The theory of higher dimensional quasiregular
mappings began with Reshetnyak’s theorem [R], stating that
they are continuous, discrete and open, if they are noncon-
stant.

In some problems appearing in the nonlinear elasticity
models suggested in [B1-2], the boundedness condition for K
is too restrictive. Typically we only have that K? is integrable
for some p. In two dimensions, Iwaniec and Sverdk [IS] have
shown that K € L] is enough to guarantee the conclusion of
Reshetnyak’s theorem. In this paper we consider the higher
dimensional case n > 3, and extend Reshetnyak’s theorem to
the case K € Lf , where p > n—1. This is known to be false
for p < n—1 and is not known in the case p =n—1.

We follow the footsteps of Reshetnyak’s original proof,
however our equations are no longer strictly elliptic. We de-
velop a method to deal with badly degenerate elliptic equa-
tions based on monotone functions estimates, that allows us
to establish a weak Harnack’s inequality for log(1/|F]). A
nontrivial matter here, is the construction of appropriate test
functions. We use a computer to exhibit an explicit smooth n-
superharmonic “bump function” which approximates log(1/|z|}.

1. Introduction. Let Q@ C R™, n > 2, be a domain and F:{2 — R” be
a mapping in the Sobolev space VV&;:(Q,R”) of functions in L} (€Q;R™) whose
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1132 E. VILLAMOR & J. J. MANFREDI

distributional derivatives belong to L7 (£ R™). We can think of F as a de-
formation of some material whose initial configuration is €2, and we seek some
functional I(F') representing the (nonlinear) elastic energy whose minimum is
attained at F, see [B1-3] and [S]. The differential of F' at a point z is denoted

by DF(z), its norm is
|DF(x)| = sup{|DF(z)h| : h € R", |h| =1}

and its Jacobian determinant is Jp(z) = detDF(xz). We assume that F is
orientation preserving, meaning that Jr(z) > 0 for a. e. z € Q. The dilatation
of F' at the point z is defined by the ratio

_|DF@)*

K(z) Tr(2)

If K(x) € L>(§; R"), then F is said to be a quasiregular mapping.
We will say that F' is a mapping of finite dilatation if

1<K(z)<oo fora. e xefl

that is, except for a set of measure zero in 2, if Jp(x) = 0 then DF(z) = 0.

A basic result in the theory of quasiregular mappings [Re], states that they
are either discrete and open or constant. In this paper, we consider the same
problem for mappings with finite dilatation. Vodopyanov and Goldstein [VG],
proved that mapping of finite dilatation are continuous and have monotone com-
ponents. See [M] for a simple proof of these facts. An example of Ball [B2] shows
that there are mappings satisfying K € LP for every p < n—1 that fail to be
discrete. From now on we will assume that K € L? for some p > n — 1.

A beautiful theorem of Iwaniec and Sverdk [IS], shows that a mapping in
the plane with integrable dilatation, K (z) € L', can be expressed as an analytic
function composed with a homeomorphism. In particular it must be open and
discrete. The proof is based on the linear two dimensional Beltrami equation
and does not generalize in an obvious way to higher dimensions.

Our main goal in this paper is to prove the following result:

Theorem 1. Let F € Wl’"(Q,Rn) be a nonconstant mapping whose

loc
dilatation K(x) is in LY (Q). Then, if p > n—1, the mapping F' is continuous,
discrete and open.

Heinonen and Koskela [HK], have recently proved this theorem when F' is

quasi-light (i. e. for all y € R”, F~1(y) is compact), and K € LT *T<(Q) for

some positive €, or assuming that F € Wh%(Q,R"), where ¢ > n+1/(n—2).
Our approach is, however, different from theirs.
An announcement of the results in this paper appeared in the Bulletin of

the American Mathematical Society [MV].
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2. Degenerate elliptic equations and systems associated with F.
Denote by adj (DF(z)) the adjugate matrix of DF () defined by the relation

DF(z)-adj(DF(z)) = Jp(z) - I.

If Jp(z) # 0, we have adj ((DF(z))) = Jr(z)(DF(z))"" and, in general, the en-
tries of adj (DF'(z)) are homogeneous polynomials of degree (n — 1) with respect
to the variables OF"/0x;.

It is a well known fact that adj (DF) is divergence free. Indeed we have

(2.1) div(adj(DF)(VoF)) =0

in the sense of distributions, where V is a Ct vector field such that divV = 0
(see for example [BI]).
Define

(2.2) G(z) = { Jr(z)?"(DF(z)!DF(z))~! if Jp(z) >0

I otherwise.

The matrix G(z) is symmetric, has determinant 1 and measures how far DF(x)
is from being conformal. In fact the pull back of the euclidean metric under
the mapping F is given in local coordinates by the matrix DF(z)* DF(z) whose
coeflicients are not necessarily bounded. A metric conformal to this one whose
eigenvalues are controlled by K (z) is obtained by multiplying by an appropriate
power of the Jacobian Jr(z). Expressing these metrics in local coordinates we
get G~1(z). From the definition of dilatation we have the following estimate

(2.3 L€ < (G0t €) < ek @)felR,

cn(K(2))

where ¢, is a constant depending only on the dimension n.

Let ¢ be a real valued function defined in R™ and consider © = o F. The
chain rule gives Vu(z) = DF(z)!'V¢(z). A basic calculation that expresses the
conformal invariance of the n dimensional Dirichlet integral is

(2.4) (G(z)Vulz) , Vu(e))*1G(x)Vu(z)
= adj DF (z)|V(F (2))|" >V (F())-
We see by applying (2.1) and (2.4) that if ¢ is n-harmonic, that is
div(|Ve(2)|"*Ve() = 0,
then u is formally a solution of

(2.5) div(A(z, Vu)) = 0,
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where

A(z,8) = (G(2)¢, "' G(2)é
satisfies
1
cenK ()
If K is bounded (F is quasiregular), the equations so obtained are of n-
Laplacian type, and the known regularity theory, see [Se|, gives right away the
Holder continuity of F' and the Harnack inequality for log(1/|F]). Indeed, by
taking ¢(y) = i, ¢ = 1,...,n we obtain that the s-th component of F, F? is a
solution of (2.5) and therefore Holder continuous. By taking

[€I" < A(z,6) € < ca K™ () €]

1
¢(y) = log =0

we obtain that log(1/|F(z) — b]) is a solution of (2.5) in the open set Q\ F~1(b)
and is in fact a nonnegative supersolution everywhere. A weak form of the Har-
nack inequality, see [BI], implies that log(1/|F(z) —b|) is in WL ~° for any ¢
positive. Standard results from nonlinear potential theory, see [HKM], give that
F~1(b) is a set of n-capacity zero, and therefore it has Hausdorff dimension zero.
It follows that F~!(b) can not contain an arc. Thus, it is totally disconnected
making F' a continuous sense preserving light mapping. A technical point must
be discussed here. The mapping F' must have positive topological index (sense
preserving in the topological sense). That this is indeed the case for every fi-
nite dilatation mapping is observed in [HK]. Since continuous sense preserving
light mappings are open and discrete, see [TY], we conclude that quasiregular
mappings are open and discrete.

If K is only in LP, it is not clear that we can use u, or a function of u, as a
test function in the weak formulation of (2.5). In order to overcome this difficulty
we use a more general version of (2.1) when V is not necessarily divergence free.

Proposition 1. Let F be in Wh™(Q;R") and V a C*-vector field. Then
(2.6) div((adj DF)V o F) = [(divV) o F|Jp
in the sense of distributions.

Remark. This formula is quite interesting in itself. It is trivial to check
when both F' and V are smooth. If we assume a priori that F' is quasiregular,
it holds for V € L™("~1) as proved in [DS]. For general F € W17 it can be
proved by an approximation argument along the lines of the proof of a similar
statement found in [S], and for even more general F it can be found on [MTY].

Let ¢ € C§°(£2), the weak form of (2.6) is,

@2.7) /Q (adj DFYV o F, Vo) dz = — /Q (divV) o F)(2)p(2) Jr () dz.
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Note that adjDF € Ln/(n_l)(Q) and Jp € L{ (). By an approximation argu-

loc loc

ment (2.7) also holds for any ¢ € W™ (€2) N L () with compact support.

The key idea in our argument is to realize that equation (2.7) is like an
elliptic partial differential equation for test functions of the form ®(F(z)). Ex-
plicitly, let € C§°(G), 1 > 0, where G is a relatively compact domain in 2.
Let ® € C?(Q'), ® > § for some positive §. Choosing p(z) = n™(z)®™(F(z)),
where m < 0 and using the chain rule we get

Vi(z) = g~} (2)@™(F(x)) Vi(z)
+ mn™(z)@™ " (F(2))(DF(2))'Ve(F()).

Plugging this into (2.7) we have

m/g(adj DF(2)V(F(z)) , (DF(2))*V&(F(z)))n" (z)@™(F(z)) dz
+ n/G<(adj DF(2))(V(F(2))) , Vn(z))n" ™" (z)®™ (F(z)) dz

= — [ @ @) @) Ir() e
Since DF(z)adj DF(z) = Jr{z)I,, we have

[ E@), vaEE)r @ (F@) i) do
= L [ (e DF@)(VEE)) Vo) @8" (P(e)ds

+ / wn"(m)@’”(F(w))Jp(m) dz.
G

—m

Suppose that we take a vector field V such that divV < 0, after taking absolute
values in both sides of the above inequality, we can drop the second term on the
right hand side, obtaining

(2.8) /G<V(F(w)) , V(F(2))n" (z)@™ (F(x))JF(z) dz

< /G (adj DF)(V(F(2))) , Va(@)yr(2)@™ (F () da.

Suggested by (2.4) we look for smooth vector fields V of class C? of the form
|V®(y)|"~2V®(y) where & is an n-superharmonic function of class C?(F(G))
and ® > § > 0. In particular ® satisfies the inequality

div(|]Ve(y)["*V&(y)) < 0.
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We will show the existence of these functions in the next section.
Substituting V by |V®|""2V® in (2.8) we have

/G V(F (@) "1™ ()8 (F(2)) Jp () de

< 2 | i D@V V(o) ()" (F (@) .

Taking now m = (1 —n), the above inequality becomes
Ve (F(z))|"
¢ 2"(F(z))

ML TIE e —
|/ [adj DF (2 Ton1(F(z)) IVn(z)|n™ ™" (z) dx.

n"(z)Jr(z)dz

Using that
ladj DF (z)|™ "~V < C,|DF(z)|* = Co K (z)Jr(z),

for some constant C, depending only on n. We follow the usual convention of
denoting by C,, to be a constant depending only on n which might differ from
formula to formula. After applying Holder’s inequality we obtain

| @) (o) do < Co [ (Vo))" 57 (@) dn
a G

" (F(z))
Since
_ |DF(=)|"
0= TR
and
V(@0 F)(z)| < |DF(z)||VR(F(z))|
we obtain

|V (® o F)( |" dz / 1
") —— < Cp "K" dx.
| e @) g < O [ On@r K @) do
Hence, we have the following basic estimate:

Theorem 2. Let ® € C?(QV) such that ® > § > 0, & n-superharmonic
with |V®(y)|"2V®(y) € CHQ') and bounded derivative. Then, we have the
estimate

o) [ IVlogtoR) @) s <

“Hz)dx

for every n € C§°(G), where G is a relatively compact open subset of ' and
n=0.
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3. A smooth n-superharmonic bump.

In this section we give an explicit construction of a family of functions ®,
that approximates log(1/|z|) as a approaches 0 in a sense to be made explicit
below.

Since our argument is local in nature, without loss of generality we can
assume that F(Q) C B(0,e7¢) = (V.

Theorem 3. For each 0 < a < e™¢, there exists a function ®,:Q) - R
with the following properties:
(i) ®, € C*HQ),

) @.(y) > e, for every y € O,
) @, is radial,
iv) @ (r) = ®,(lyl) <0,
(v) ®, is n-superharmonic,

) log(1/a) < @u(y) < log(1/a)+ 3 +log2, for every |y| < e,

) @aly) =log(1/lyl) fora < |yl < e, and

)

Proof. Define the functions ®,(y) as follows:

1

((log —, ifr=\yl >a
]
1 _ _ 2

log__Iyl a_ (yl-a) , ifg<|y|<a

2
@a (y) — a a 2a \

1 1 |y]
log = +1 S 4+(5- 2)YL
og_+ 0g2+2~l—(5 12log2) 2
ly* yl® . a

We arrived at these functions by experimenting at a computer. A Mathematica
notebook with these calculations is available at
http://www.pitt.edu/ manfredi/bamsapp.html.
In the next few lines we provide a classical proof of the proposition.
From the definition it is clear that these functions ®, are radial. Set

1
u(r) = log; if r > aq,

1 r—-a (r—a)?
—log—— 1@
v(r) Oga a 2a?

. a
1f§<r<a,

1 1 2 4
w(r) = log ~ +log2+ 3 + (5 - 1210g2)2—2 FA(-T+ 1210g2)2—4

log2)e ifr<?
+ 8(5—8log )E 1r<§.
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It is a straightforward exercise to show that the functions u and v agree at
a up to order 2, and that v and w agree at a/2 up to order 2.

Step 1. The function v(r) is decreasing, indeed v'(r) < —1/a for any a/2 <
r < g as it follows from elementary calculations.

Step 2. The n-Laplacian of v is less than or equal to zero in the interval
(a/2,a), i.e. Apv <O.

Proof. Indeed, |v'(r)] = 1/a+ (a —r)/a® = (2a —r)/a®. Therefore,
d

d n—1(,/ n—2,./ _
= ()R () =

(r" 7 (=o' ()" )

= "2 (= 1) (=0 (1)) 2 () o/ ()]

= P2 (p — 1)(—v (r))" 2 [% - % + ’“;’2“]
= "2 — 1)(—/ ()2 [%] <0 =

Step 3. The function w satisfies w'(r) < 0 in the interval (0,a/2].

Proof. Indeed one has
'(r) = 2(5 — r _ AN _ ry?
aw'(r) = 2(5 12log2)(a)+16( 7—|—12log2)(a> +48(5 810g2)(a) .

Ifwelet3:3,then0<s§%andset

a
f(s) = aw'(as) = 2(5 — 12log2)s + 16(~7 + 12log 2) s> + 48(5 — 8log 2)s°.
Letting h(s) = f(s)/s we have
h(s) = 2(5—12log2) + 16(—7+ 12log 2)s* + 48(5 — 8log 2)s*,
where 0 < s < % Let s2 =t¢,then 0 < ¢t < % and we obtain
h(Vt) = 2(5 —12log2) + 16(~T7 + 12log 2)t + 48(5 — 8log 2)t°.

Taking the derivative with respect to ¢, making it equal to 0 and solving for ¢,
we obtain

%h(\/f) = 16(—7+12log2) + 96(5 — 8log2)t = 0.

This identity holds for t* = .402855. The derivative %h(\/f) at t = 0 is approx-
imately equal to 21.08, thus 2h(+/f) > 0 in the interval (0, %], and hence the

function h(+/%) is increasing on that interval. If we compute, h(4/1/4) = -3 <0
and therefore w'(r) < 0 in the interval (0,a/2]. O
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Step 4. The n-Laplacian of w is less than or equal to zero in the interval
(0,a/2), ie. Apw <0.

Proof. The n-Laplacian for radial functions is given by
Apw = (n~1)r~ ! (—w' ()" *[rw" (r) + v/ (r)).
Computing the expression in brackets we get,

[rw”(r) +w'(r)]

5
= 2(5—1210g2) +48(— 7+12log2) +240(5 8log2)

3 5
+ (—1210g2) +16(— 7+1210g2) +48(5 — 810g2)

rd

I

A(5 — 121log 2)a12- 1 64(—T+ 1210g2) i 288(5 — 8log 2)
Therefore, multiplying by a/r and letting t =r/a, 0 <t < %, we have
h(t) = %(taw”(at) + ' (at))
and making s =2, 0 < s < %, we obtain
h(v/s) = 4(5 — 121og2) + 64(—7 + 12log 2)s + 288(5 — 8log 2)s?
Taking the derivative we have
dis(h(\/g)) = 64(~7+12log2) +576(5 — 8log2)s,

making it equal to zero and solving for s we obtain

. 64(7—12log2) (7—12log2)
~ 576(5—8log2)  9(5—8log2)

1
= .2685 > —.
4

Since 4 (h(v/5))]s=0 = 64(—7+ 12]og2) = 84.33 > 0 implies that & (h(/3)) > 0
on the interval [0, 4] and therefore, the function h(y/s) is 1ncreasmg on that

interval since h(4/1/4) = —2 < 0. Thus, we have that A,w < 0 on the interval
(0,a/2). o

Step 5. The vector field |V®,(y)|" 2V®,(y) € C1() if n > 3.
Proof. The point y = 0 is the only possible problem. There we have,

w(r) = a+br? +cr* + dr®
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thus, w'(r) = 2br + 4er® + 6dr°. Therefore,

V@ (y) = () Vr = &, ()%

b4

and hence
V0 (y)" 2V Pu(y) = €, (D" 22, (r) 2.

Letting

V(y) = [V®a(y)|" *Veal(y)
= |24 (r)|" 2@l ()
= (—r(2br + 4cr® + 6dr°)) "2 (2br + der® + 6dr®)y

= —r""2(—(2br + 4er® + 6dr°)) 1y,

which is clearly C™® away from the origin. We need to show that the partial
derivatives of V are in C* and bounded at the origin. For that, we compute the
partial derivatives

0 i_ 0 o _.n=2 n—3yyj
&Ejv = &Tj(r y)=7r""%6;+(n—2)r -

where §;; denotes the Kronecker delta function. The first term above is contin-
uous, as for the second term it tends to 0 as r — 0. O

Remark. Theorem 3 is certainly true for n = 2 and easier to prove.

4. Completion of the proof of Theorem 1.
Substituting ® by ®, in (2.9) we obtain

@1) [ 9or(®.0 P (@) 5 < Cu [ 190 K™ )i,

whenever 1 > 0, 7 € C§°(G). For any 0 < ¢ < 1, using the above inequality and
Holder’s inequality we have

/G |V (log(®q 0 F) ()"~ <" (2) dz

_dz
K(z)

o dr (n—1+4¢€)/n
< ( [ [9tog(@a0 )@ (m)m)

(1-e)/n
. ( / Kn=1+9)/(1=9) () dm) ,
G

- /G 1V (l0g(®, 0 F))(@)["~Hm5(2) K (2)
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Using (4.1) we obtain

(4.2) /G IV (log(®, 0 F)) ()"~ 44114 (2) da

< Cn (/G IVn(x)I"K"‘l(x)dx> (el

(1—-¢)/n
. < / K=1+0)/(1=¢) () dw) ,
G

n—1+¢ ne
. =" 14 e

So that if K(z) € L' we can always find a positive ¢ so that (4.2)
holds. It is worth pointing out that (4.2) always holds for ¢ = 0.

Without loss of generality we can assume that the function F' is nonconstant
in the domain Q, and that 0 € F(2). Thus, there exists Z € Q such that
|F(%)| = 2b > 0. Set Q4 = F~*(|y| < b), then Q, is open and contains F~1{0}.
Let U be a component of £, such that UNF~1{0} # @. We want to show that
cap,(UNF~1{0}) =0, for some n—1 < ¢ < n.

Since OU C 0% implies that U = €2, which is impossible since Z ¢ U, there
exists zo € OU N C 02, NQ, hence [F(zg)| = b > 0. Moreover, by continuity
|F(x)| > b/2 for every z € B(xg,n) for small > 0.

In order to show that cap,(UNF~1{0}) = 0 for some n—1 < ¢ < n it
is enough to show that any compact subset of U N F {0} has g-capacity 0, so
let K be any compact subset of U N F~1{0}. Choose a small ball B compactly
contained in B{xg,n) NU. We now have that for any z € B

Observe that

(4.3) < log ! <lg2<oo
. e —— <log~ .
[F(z)] b

On the other hand by property (vi) of the functions ®,’s
1
(4.4) log®,(F(z)) = log®,(0) > loga

for any ¢ € K.
Select a test function n € C§°(U) such that n > 1 in K. We consider the
function
n(z)log o (F(x))
log % '

Va(z) =

Let us check that V, € W}'%(U) where ¢ = n— 1 +¢. We compute the gradient
of the function V,,,

VVa(z) = {IV(l0g @, 0 F)(z)n(z) + (log &, 0 F)(z)Vn(z)},

log %
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using equation (4.2) we obtain

(4.5) /U YV (2)|%da

< Cn (logli)q{ (/U |V77(33)|"K”_1(:r)dx) o (/UKq/("—q)(w) dm) (noa/n

- [ |log<baoF(m>|q-|Vn<w)|‘1dx}.

The first term on the right hand side of (4.5) is bounded independently of a. In
order to estimate the second term observe that V(log(®,0 F)) € LL (), with
bounds independent of a. More explicitly we have the following lemma,

Lemma 4. Whenever B, = B(z,r) C By = B(,2r) C Q andn—1 <
q < n we have

e o (n—q)/q
<][ |V (log(®, oF))(a:)|qd:c> < Tn ( K(m)Q/(”'Q)da:> .
B'r B2r

Proof. By (4.2) applied to the ball By, we have

/B% |V (log(®, 0 F))(x)|1n? () de < Cy (/ an(x)I"K"—l(w)dx) a/n

Ba,

(n—q)/n
. ( / Ko/ (=) () dx)
B2r

where the function n(x) is chosen to be 1 on B, supported in By, and its gradient
behaves as 1/r. Applying Hélder’s inequality to the first integral on the right
hand side for p = q/(n — 1){(n — q) we obtain

n—q
/ |V (log(®q 0 F))(x)|%dz < % ( KY=9)(g) dm) pr(ati-n)
B,

Bar

finally taking the ¢g-th power on both sides and integral averages we have

<]ér W(log(@aoF))(w)lqdm)l/q < Cn ( 3 K409 () dx) (n—gq)/n ]

r

By property (vii) of Theorem 3 we have |log(®, 0 F)(z)| < loglog(2/b), if
a < b/2 and z € B. It remains to be seen that

[ log(@ac F@irda
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is bounded independently of a, for a < b/2.
This follows from the following known Sobolev type inequality. We provide
an easy proof by the usual method of compactness as in [E].

Lemma 5. Let G be a domain and B an open ball contained in G. Then,
there exists a constant C' = C(n,p,B,G) such that for all u € WHP(G) we have

/G lu(z)[Pdz < C{ /G |Vu(z)Pdz + /]B |u(m)}pdx}.

Proof. By homogeneity, we can assume that [ |u(z)[Pdz = 1. We need to
prove that

p P l
/GIVu(w)I dw+/Biu(x)l de > = >0.

Suppose that this is not the case. For every positive integer n, we can find a
function u, € W'P?(G) satisfying [, |u,(z)[Pdz = 1 and

(4.6) /G Vi (2)Pdz + /B lun () Pdz < %

We can now select a subsequence denoted again by u, and a function uy €
W1P(G) such that u, converges weakly to uy in WHP(G). Tt follows that uy,
converges to ug in LP(G) and by the weak lower semicontinuity of the LP norm
we have

/ [Vug(z)[Pde < liminf/ |V, (x)|Pdz = 0.
G n—oo G

Thus, the function ug satisfies [, [uo(x)|Pdz =1 and Vuo(z) =0 fora.e. z € G.
Since G is a domain ug must be a constant function. On the other hand it
follows from inequality (4.6) that [, |uo(x)[Pdz = 0 forcing this constant to be 0
in contradiction with [, uo(z)|Pdz = 1. O

Letting a — 0 in (4.5) we conclude that cap,(K) = 0, and therefore
capy(F~(0)) = 0.

By the relationship between Hausdorfl dimension and capacity it follows that
the Hausdorff dimension of F~1{0} is smaller that n—¢ < 1. In particular
F~1{0} can not contain any segment, and therefore it is totally disconnected.
Replacing F'(z) by F(z) — b it follows that F~1{b} is totally disconnected for any
b € R™. The mapping F is therefore an orientation preserving light mapping and
it follows from the Titus-Young theorem, see [T'Y], that F is open and discrete.
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5. Notes on the critical case.
As we pointed out earlier estimate (4.2) remains valid when we assure only
that K (x) € L', We obtain,

loc

. . (n—1)/n
/G|V(10g(<1>aoF))(m)‘ 7 l(m)dxgcn (/G|V7](:E)| K 1(x)d:c)

- ( /G K (z) dm) v

From this formula, by letting a — 0, it follows that

/G ‘v (loglog %) ()

A simple modification of the argument in the previous section gives that the
Hausdorff dimension of F~!(0) is less than or equal to 1. With no further re-
strictions on F' we are not able to prove or disprove by means of a counterexample
that F~1(0) is a discrete set.

In a related work J. M. Ball, see Theorem 1 and 2 in [B2], showed that if
we assume, in addition to K(z) € LY _ for some p > n—1, that F' has homeo-
morphic boundary values one can prove that in fact the mapping F is discrete
and open. In the same work, Ball constructed some mappings I’ with homepo-
morphic boundary values for which K(z) € L} for p < n—1 which fail to be
discrete, leaving open the case p = n—1. We conjecture that in this case the

mappings are discrete and open.

n—1

dr < oo.

REFERENCES

[B1] J. M. BALL, Convezity conditions and existence theorems in nonlinear elasticity,
Arch. Rat. Mech. Anal. 63 (1977), 337-403.

[B2] , Global invertibility of Sobolev functions and the interpenetration of matter,
Proc. Roy. Soc. Edinburgh 88A (1981), 315-328.
B3] , Discontinuous equilibrium solutions and cavitation in nonlinear elasticity,

Phil. Trans. Roy. Soc. London 306A (1982), 557-612.
[BI] B. V. BoJarskl & T. IWANIEC, Analytic foundations of the theory of quasiconformal
mappings in R™., Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-324.
[DS] S.DonaLDSON & D. SULLIVAN, Quasiconformal 4-manifolds, Acta Math. 163 (1989),
181-252.
[E] C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19,
Amer. Math. Soc., Providence, Rhode Island.
[HK] J. HEINONEN & P. KOSKELA, Sobolev mappings with integrable dilatation, Arch. Rat.
Mech. Anal. 125 (1993), 81-97.
[IS] T.IwWANIEC § V. SVERAK, On mappings with integrable dilataion, Proc. Amer. Math.
Soc. 118 (1993), 181-188.
[M] J. MANFREDI, Weakly monotone functions, Jour. Geom. Anal. 4 (1994), 393-402.



MV]
MTY]
[Re]

[S]

J. Serrin

(TY]

[VG]

An Eztension of Reshetnyak’s Theorem 1145

J. MANFREDI & E. VILLAMOR, Mappings with integrable dilation in higher dimen-
sions, Bull. of the Amer. Math. Soc. 32(2) (1995), 235-240.
S. MULLER, Q. TANG & B. S. YAN, On a new class of elastic deformations not allow-
ing for cavitation, Ann. Inst. H. Poincaré, Annalyse Nonlinéaire 11 (1994), 217-243.
G. Yu. RESHETNYAK, Space mappings with bounded distortion, Transl. Math. Mono-
graphs, Amer. Math. Soc., vol. 73, 1989.
V. SVERAK, Regularity properties of deformations with finite nergy, Arch. Rat. Mech.
Anal. 100 (1988), 105-127.

Local behavior of solutions of quasilinear elliptic equations, Acta Math. 111
(1964), 247-302.
C. 5. Trrus & G. S. YOUNG, The extension of interiority, with some applications,
Trans. Amer. Math. Soc. 103 (1962), 329-340.
S. K. VODOPYANOV AND& V. M. GOLDSTEIN, Quasiconformal mappings and spaces
of functions with generalized first derivatives, Siberian Math. Jour. 17 ( 1977), 515-531.

Acknowledgment. Research by J. J. Manfredi was partially supported by the National Sci-
ence Foundation.

ENRIQUE VILLAMOR
Department of Mathematics
Florida International University
Miami, Florida 33199

U.S. A.

EmMaIL: villamor@fiu.edu

JUAN J. MANFREDI

Department of Mathematics and Statistics
University of Pittsburgh

Pittsburgh, Pennsylvania 15260

U.S. A,

EMAIL: manfredi+@pitt.edu

Received: August 24th, 1996.





